
; LO G I N : Au gust 20 0 8	 con fe re n ce re p o rt s	 115

introduction to debugging the freebsd kernel

Summarized by Bjoern A. Zeeb (bz@FreeBSD.org)

John H. Baldwin, Yahoo! Inc.
John Baldwin started with an overview of the various
places to find documentation on the subject. He continued
by showing how to use the interactive kernel debugger for
investigating deadlocks. For the developers in the audi-
ence he talked about how to enhance ddb(4) by adding new
commands. The next section was on the kgdb(1) debug-
ging kernel modules and scripting by adding user-defined
commands. He closed with a summary on the different
strategies for debugging kernel crashes versus system hangs.
Slides and a paper with more information are available on-
line at http://people.freebsd.org/~jhb/papers/bsdcan/2008/.

wips

Summarized by Mathieu Arnold (mat@FreeBSD.org)

* Ivan Voras on mdcached: It is a caching daemon, much
better than memcached, optimized for multicore servers,
and very fast; you can put tags on data and search with
tags, which seems to be a handy idea.

* Frank Pikelner on Versiera: This multi-OS server manage-
ment software, developed by Netcraft, seems nice.

* Philip Paeps on syscons and other scary things: Philip
says he came into device drivers because of a touchpad
that was working rather strangely. He’s also going to break
syscons in the upcoming months by taking it apart and
separating it from the framebuffer and ttys.

* Peter Losher on IPv6 and the root name servers: We’ll be
out of IPv4 in two years, so get used to it, but 6 of the 13
root servers have had IPv6 for quite some time now, and
those IPs have been added to the root zone file.

* Bjoern Zeeb on multi-IPv4/IPv6/no-ip jails: There have
been multiple patches for multiple IPv4, vimage, IPv4+IPv6,
and jailv6, and some things are moving along nicely. Ul-
timately, we’ll have DDB and SCTP support. The current
system is pretty light, and it works in production. Things to
do include source-routing; cpuset selection; adding a name
to the jail so that it can be put in ps, for instance; support
for bsnmpd; and adding resource limits.

* Zachary Loafman on FreeBSD at Isilon: They have a
distributed filesystem called OneFS, sponsored the work to
have NFSv3 locks working, and have tons of other things
(as shown in too many interesting slides with no time to
take notes), but they lack time to contribute them and are
hiring and willing to sponsor projects.

* Mark Linimon on Bugathons + BugBusting BoF: Bug
athons bring volunteers, and it really helps to categorize
PRs; volunteers bring in lots of fresh blood and also many
fresh interesting ideas, so if you want, you can help too.

* Julian Elisher on Vimage, MRT: The kernel modules will
be virtualized one after another.

* George Neville-Neil on network testing: TCP is king, in
general, and peasants like multicast and UDP get much less
testing. The network test utility mctest, with sources and
sinks, is in src/tools/tools/mctest. PCS is another network
tester and has been improved; this year it’s a Google SoC
project.

* George Neville-Neil on XEN: HEAD works with Xen 3.1
and 3.2 in perforce, and Xen 3.0.3 is in the pipe for Amazon
EC2. It’ll happen right after FreeBSD switches to svn, and it
will support 64-bit architectures.

* Julian Elisher on multiple routing tables: He showed two
big schemas with lots of structures, pointers, and other
stuff; one is bad because the API changes too much; the
other is good because it does not change that much.

the very end

Summarized by Bjoern A. Zeeb (bz@FreeBSD.org)

If you want to find out how Dan felt about the conference,
go to his blog at http:/dan.langille.org/ and check for “Three
Weeks in the Life of a Conference Organizer.” Thank you,
Dan, for another fantastic BSDCan! Is this the end? No.
Do you want to know what else happened those days? You
had better come and find out yourself next year. See you at
BSDCan 2009, when it will be the biggest OS(S) conference
in town.

BSDCan 2008 FreeBSD Developer Summit
Ottawa, Canada
May 14–15, 2008

Summarized by Bjoern A. Zeeb (bz@FreeBSD.org) and
Marshall Kirk McKusick (McKusick@McKusick.com)

introduction

A developer summit is a get-together of some FreeBSD de-
velopers to present recently finished work and to talk about
ongoing work or future plans. Although this is not a place
to make decisions concerning the entire project, there are
usually enough of the key developers present that a lot of
design issues get hashed out.

Developer summits are often aligned with a BSD conference,
as many developers are going to be there anyway. The sum-
mit also provides an opportunity for people from companies
using FreeBSD or other FreeBSD-derived projects to attend.
This mix of developers and users presents a great opportu-
nity for the developers to get direct feedback on their work
and for the users to gain an understanding of likely future
developments.

116	 ; LO G I N : VO L . 33, N O. 4

This report gives our thoughts on the developer sum-
mit events that we attended. For more complete de-
tails and often the slides used by the presenter, see
the Developer Summit wiki page, http://wiki.FreeBSD.
org/200805DevSummit.

The format of the summit was to have formal talks in the
morning, with afternoons devoted to free-for-all discussions
by smaller, self-selected groups on various specialized topics
largely selected at the conclusion of the morning talks. Most
of this report will focus on the morning sessions, as their
content is more easily summarized.

summit day 1

The day opened with a welcome message from Robert Wat-
son, the main organizer for the summit.

Poul-Henning Kamp started with a general discussion about
GreenBSD. This project will not be a fork of FreeBSD, but it
might become a new, large-scale project encompassing large
parts of the system. The main thrust of GreenBSD is “green
computing,” that is, reducing power consumption whenever
and wherever possible. Examples include turning down
gigabit interfaces to 100 Mbit/s if there is no need for more
speed, entirely shutting down unused NICs, or reducing
clock speeds and voltages on otherwise idle CPUs. The key
is to figure out the correct abstraction and support function-
ality so that it is not necessary to endlessly duplicate code
in each device driver.

Next, Ivan Voras spoke about his Google Summer of Code
2007 project, finstall, a graphical installer that provides
more automated decision making and provides interfaces
to more parts of the systems such as geom, networking
options, ZFS, and gjournal. It is split into a front end and
a back end and is written in GTK and Python. The split al-
lows finstall to implement a remote installation console. The
back end can be used for non-base-system installs as well.
At the moment it is still lacking a graphical partition editor.

During the question period Ivan was asked how much work
would be required to replace the Python back end with a C
implementation. Concerns were also raised about the front
end using GTK because of it being LGPL. In particular,
the discussion migrated to whether the front end could be
replaced with a text-mode-only implementation in C and
whether that would really just drop back to the current
capabilities of the curses-based front end.

After a short break Alexey Tarasov spoke on his Google
Summer of Code 2007 project, which involved kernel
netbooting via HTTP. The work consists of a PXE API, a
tiny TCP/IP stack, PXE sockets, etc. Unfortunately, there is
no IPv6 support with PXE. There are basic filters to restrict
IP/ports. The most important but also complicated task
had been the user mode implementation of the tiny TCP/IP
stack along with memory constraints (buffering issues). It
uses httpfs provided by the boot loader including HTTP

1.1 support. DHCP, DNS client, ICMP echo, ARP, and boot
console commands are already implemented. Work in prog-
ress includes a telnet client, socketfs, IPv6 support, and a
possible parsing of HTTP server index pages.

Rafal Jaworowski was up next with an embedded-architec-
ture status report: arm, MIPS, and PowerPC. The arm port
is “almost” tier-1, as of the FreeBSD 7.0 release. More arm
functions and features are in the pipeline. Unlike the other
architectures, it is nearly impossible to have a single arm
GENERIC kernel as there are so many incompatible varia-
tions of the arm architecture. Juniper Networks has been
providing a lot of the MIPS support. FreeBSD 7.0 supports
both the 32-bit and 64-bit MIPS architectures. As with the
arm architecture, much additional MIPS functionality is in
the pipeline.

The PowerPC is more of a work in progress, also being sup-
ported by Juniper. At the moment most of the PowerPC sup-
port is for the high-end chipsets and SMP support. Bridge
mode is going toward 64-bit PowerPC support.

There are two Google Summer of Code 2008 embedded-sys-
tems projects. The first involves optimizing the build system
for embedded systems. The second is to port to Efika, a
cheap platform. Other embedded projects on the wish list
are improving support for a flash-memory-based filesystem,
an improved build system to support cross-building from
Linux or Windows, and better system/kernel configuration
for creating a smaller footprint.

Ed Schouten talked about reimplementing FreeBSD’s tty
layer. The tty system is the one part of the system that has
not been rewritten to support SMP so still needs to run
under the Giant lock. Ed started with a design overview,
which involved the removal of the fragile clists buffer mech-
anism from tty. Among other things he is now destroying
ptys when unused so that they do not clutter up /dev and
consume kernel resources. He multi-threaded the transmit
path buffering and eliminated the global buffer list. Best of
all, he managed to keep all but sgetty ABI compatible. Still
to be done is the (fairly mechanical) task of adding multi-
threading support to all the serial devices.

This concluded the first day’s formal presentations. After a
lunch of pizza everyone broke up into smaller discussion
groups. The ``Network Cabal’’ started with Jeff Roberson,
Julian Elischer, and Kip Macy on a redesign for mbufs. Jeff
has a new concept that ref-counts mbufs so that they re-
quire less copying on forks. In addition he combines a clus-
tered mbuf with a small mbuf header to increase efficiency
when a copy of the mbuf needs to be retained, for example
with TCP. The ongoing discussion was mostly with Sam
Leffler and Robert Watson debating mbuf layout, mbuf tags,
mbuf back traces, and techniques for tracking mbuf leaks.

Lawrence Steward led a discussion about TCP bug foren-
sics. After introducing himself and a bit of TCP jargon and
history he delved into congestion control algorithms. He
explained which OS is using which algorithm and talked

; LO G I N : Au gust 20 0 8	 con fe re n ce re p o rt s	 117

about what parameters to look at when comparing the vari-
ous different algorithms for high-speed connections.

Next he turned his attention to tools. Dummynet has
problems. SIFTR is their tool to generate CSV-like informa-
tion for later analysis. He showed how to use the data of the
tool in three interesting case studies of problems they had
found.

The next slot was debugging and profiling tools. John Birrell
led the discussion by opening with a demo on DTrace. One
of the important things that he stressed was that DTrace is
not a debugger. One key thing to understand about DTrace
is that it can always be compiled into the kernel as it has
almost no overhead when it is not being used. Indeed the
(only) overhead is NULL pointer checks for the DTrace
modules. If the modules are loaded, there will be an addi-
tional bitwise AND to do a mask check. So, one can expect
to have DTrace available even on production systems. The
other key point that came up is that DTrace does not re-
place other tools such as ktrace and gprof.

The last big section of the first day was a presentation
on network stack virtualization by Marco Zec and Julian
Elischer. They explained how they had implemented load-
able network-stack support. In short, all the formerly global
data structures and variables had been gathered together
into a dynamically allocated structure. In this way, multiple
copies of the network stack could run in isolation; for ex-
ample, each jail could have its own network stack on which
to operate. This functionality allows each jail to run its own
packet filter, raw sockets, ICMP, ALTQ, etc.

summit day 2

Adrian Chadd started off the second day of presentations by
talking about TCP content- and service-provider hijacking.
He discussed both malicious and deliberate hijacking and
described the different methods and technologies used. He
explained the various problems that arise when deliberate
hijacking is done. The issues involved TCP options, screw-
ups in MTU discovery, failures in properly setting TCP
options, and the effects of an older implementation such as
TPROXY.

Next Doug Rabson talked about his work on replacing the
error-prone userland NFS Lock Manager with a kernel-
based one; this led to a lot of cheering. He started with a
basic overview of the different NFS versions (2/3) and un-
documented newer stuff. FreeBSD locking used to be done
in the old userland rcp.lockd, which lacked proper client-
side locking. The new kernel-based rcp.lockd supports
everything but DOS shares. It has kernel-mode implementa-
tions for both client and server. Local locking now supports
asynchronous operation and there is a graph-based dead-
lock detection. He also implemented fairness for contested
locks so that locks are handed out first come, first served.
He even added regression tests to ensure that it works and

continues to work. The kernel-mode implementation is now
the default, but there are options in GENERIC so that you
can opt out of the kernel-mode lock manager and fall back
to the “old rpc.lockd.”

Justin Gibbs provided a break in the onslaught of technical
information by giving an update on the FreeBSD Founda-
tion. He explained that the foundation was created to pro-
vide a way to channel money to fund development of un-
popular parts of the system, as a way to build long-standing
relationships with vendors and to provide an organization
that can negotiate legal contracts. By providing a stand-
alone organization rather than affiliating with an existing
corporation they avoided any conflicts of interest. Thus, the
FreeBSD Foundation is an independent corporation with
management that is internally elected, and its activities are
guided by its charter, which states its role as improving,
nurturing, protecting, and evangelizing FreeBSD. In short, it
is the “tie that binds” FreeBSD.

The FreeBSD Foundation is providing travel grants, event
sponsorship, funds development, IP protection, legal and
contract negotiation, and management of hardware dona-
tions. Challenges include knowing the user base, maintain-
ing critical mass, finding funding for the FreeBSD platform,
helping to define and set milestones, and growing the
capabilities of FreeBSD.

Returning to the technical theme, Erwin Lansing talked
about the task of the FreeBSD port manager. He gave some
numbers and statistics and went into the details of the port
monitoring software. As there are now over 18,000 actively
maintained ports, many manual tasks have to be handled
automatically. There is software for tracking problem re-
ports, detecting maintainer-timeouts, ensuring that pack-
ages compile on all platforms, determining package depen-
dencies, etc. This summer three Google Summer of Code
students will work on the ports infrastructure.

Robert Watson stepped up the pace of discussion with his
talk on TCP scalability in the presence of 16-core SMP sys-
tems. He started with the big picture: MPSAFEness, Giant
free, and improving multi-threaded workloads. He went
on to describe UDP problems: throttling by exclusive write
locks, and excessive overhead from the socket buffer code.
Once these were fixed, the bottleneck moved to the routing
code, which has no parallelism. Streamlining the routing
code led to the transmit queues, which need to be serialized
to preserve ordering. The trick seems to be to serialize them
only per connection and not for all UDP traffic, which is
easier said than done.

The TCP stack has even more bottlenecks, including one
lock for all incoming packets, serialized access to look up
the connection for which a packet is destined, along with
socket buffer send/receive, routing, and the transmit queues
noted in UDP. He talked more about stack parallelism,
direct dispatch versus input queuing, and maintaining per-

118	 ; LO G I N : VO L . 33, N O. 4

connection ordering when running with multireceive and
multisend queues.

The last formal talk was by Peter Wemm on Version Con-
trol. Whereas most agree that CVS has hit a wall, it was
much less clear what should replace it. After much investi-
gation Peter concluded that Subversion would be the best
replacement. The command-line interface is nearly the same
as that of CVS except that it uses URLs instead of paths in
some places.

After the initial changeover, all changes into Subversion
will be reflected into the CVS tree. That means cvsup will
still work and there will be almost no visible changes for
the world apart from minor things such as slightly different
commit messages. That also means that cvsweb would still
work and that there would be a backup plan in case Subver-
sion does not work out. The project could just switch back
to CVS.

The first after-lunch discussion group was on system-trust
issues. Topics included the mandatory-access framework,
auditing activities within jails, and increasing the granular-
ity of privilege: getting away from all (root) or nothing (all
other users).

Jeff Robinson led a discussion of an overhaul of the buf-
fer cache. Much of the functionality formerly provided by
the buffer cache (caching, identity, clustering, etc.) is now
provided by the virtual-memory system. Jeff talked about
which functionality remained in the buffer cache and how
to push that functionality elsewhere so that the remains of
the buffer-cache interface can be eliminated. Details are at
http://wiki.FreeBSD.org/Buf0x.

The day ended with a long reprise of the network-stack
virtualization discussion, getting down to the specifics of
defining a set of steps toward its realization, ordering those
steps, and setting a timeframe for each step.

