
A n d r e w B r o w n s w o r d

driving the evolution of
software languages to
a concurrent future
Andrew Brownsword is Chief Architect at Electronic
Arts BlackBox in Vancouver, Canada. He has been
with the company since 1990 and has a BSc in
Computing Science from the University of British
Columbia.

andrew@brownsword.ca

Concurrent: existing, happening, or done at the
same time.

C o n c u r r e n c y h a s b e c o m e a h o t
topic in the past few years because the
concurrency available in hardware is in-
creasing. Processor designers have reached
a point where making sequential tasks take
less time has become impractical or im-
possible—the physical limits encountered
demand engineering tradeoffs. But writing
software that takes advantage of concur-
rency is hard, and making that software
perform as well on different CPU architec-
tures is all but impossible. In this article, we
will explore the reasons why this is currently
true, with specific examples, and will con-
sider how this evolution represents a chang-
ing paradigm that renders the traditional
imperative programming model fragile and
inefficient.

For the past 20+ years, hardware designers have
been using concurrency in the form of pipelining,
superscalar issue, and multi-transaction memory
buses to improve the apparent performance of what
appears to be sequential hardware. Since about
the late 1990s most microprocessors have also in-
cluded SIMD instructions, which are typically ca-
pable of 4 FLOPs (Floating Point OPerations) per
instruction. More recently, some processors sup-
port multiple threads per core (from two in Intel’s
Hyperthreading, up to eight in Sun’s Niagara archi-
tecture), and now processors with two or four cores
are becoming the norm. Michael McCool’s April
2008 ;login: article provides an overview of these
techniques.

Computational Efficiency

Most high-performance modern hardware these
days is theoretically capable of about 10–20 FLOPS
for each floating point value moved through the
processor. In terms of latency, approximately 400-
4800 FLOPS could theoretically be done in the
time it takes to fetch a value directly from memory.
These are theoretical peak computation rates, based
on the four-way SIMD capabilities that most pro-
cessors have now. Theoretical rates are not reached
in practice, so what can we really expect to achieve
and what do we see in practice?

; LO G I N : J U N E 20 0 8	 d ri v ing language s to a Concurrent Future	 45

46	 ; LO G I N : VO L . 33, N O. 3

How efficiently a processor executes is a function of the details of the pro-
cessor’s operation, its memory subsystem, and the software that is running.
Typically all operations are scalar, because that is how most languages are
defined. ALGOL set the pace, and most imperative languages since then
have been embellishing the basic model. They embody the ideas of the se-
quential Von Neumann architecture and are notations for describing a se-
quence of scalar operations. These operations are usually dependent on the
output of operations that came immediately before, or nearly so.

Also, typical code sequences are filled with decision points and loops, which
appear as branch instructions that disrupt the efficient flow of instructions.
Branch frequency and data dependencies in typical code are a frequently
measured metric by hardware and compiler developers. In the mid 1990s,
IBM found during the development of the PowerPC 604 that branches oc-
curred, on average, once every 6 instructions. This makes it largely unpro-
ductive to have hardware dispatch more than about 3 or 4 instructions per
clock cycle. To this day most hardware is aimed at 2- to 4-way dispatch,
which is unsurprising, since software hasn’t changed substantially. More
recent tests on an in-order processor showed that most of the software for
gaming platforms averaged about 10% of the potential instruction dispatch
rate. And very little of that software was using the considerable SIMD capa-
bilities of the hardware, leaving the realization at less than 3% of the proces-
sor’s theoretical computational capability. Instead of the theoretical potential
~25 GFLOP, less than 1 GFLOP was realized. Out-of-order-execution pro-
cessors will do somewhat better than this, but usually only by a factor of 2
or 3.

In recent years both the number of cores in one system and, on some cores,
the number of threads executing on each core have increased beyond unity.
I will ignore the distinction between hardware threads sharing a core and
multiple cores for the rest of this article and will refer simply to “threads.”

Memory and Threads

Multiple threads must share the system in which they exist. The most im-
portant shared resource is main memory (RAM). In most systems there is a
single large pool of RAM. The system may also have a GPU processor, and
some architectures give the GPU its own pool of RAM. Some systems parti-
tion the CPU memory by attaching parts of it directly to each processor; this
is called NUMA (Non-Uniform Memory Access). How each processor ac-
cesses data at a given memory address and how long it takes to do it depend
on where that memory is physically located.

The sharing of memory is complicated by the fact that processors use on-
chip caches to speed up memory access. When the cache isn’t shared by all
threads, the potential exists for a given memory location’s actual current
state to be sitting in one thread’s cache when another one needs it. Most
hardware implements “cache coherency,” which is a mechanism that tracks
where each memory location’s actual state is and retrieves it from that lo-
cation when requested. Having multiple threads reading the same location
is dealt with by having multiple copies of the state in the various caches.
Writing to the same location is problematic, however, because a single cur-
rent state must be kept up to date and it is usually placed in the cache of the
thread that most recently modified it. If more than one thread is continu-
ously updating the same location at the same time, considerable intercache
traffic may result.

From a developer’s perspective the problem with multiple threads, at least
in an ALGOL-like language, is that the program must be explicitly writ-
ten to take advantage of them. Given a program written for a single-proces-
sor machine, all but one thread will sit idle unless the operating system has
something for additional threads to do. Typically the OS has enough to keep
a second thread at least partially busy, and some OS services are now inter-
nally moving computation to other threads (graphics, movie playing, ani-
mation, etc.) if those services are in use. If the hardware has more than two
threads, however, then they are going to be doing little to improve your soft-
ware’s performance. As a result, if you are using 3% of one thread’s poten-
tial and you have a four-core machine, for example, you are now only using
<1% of the system potential. In theory you could speed up your software by
a factor of over 100 or be doing 100 times as much computation on the same
hardware.

Programming for Concurrency

So how do you take advantage of this ability of hardware to operate concur-
rently? Broadly speaking, there are two kinds of available concurrency: in-
struction-level and thread-level.

Instruction-level concurrency has largely become the domain of the com-
piler, but that doesn’t mean there is nothing you can do about it. The choice
of language you use and how you use it has an enormous impact. As already
mentioned, most current languages embody a fundamentally scalar and se-
quential programming model. Some compile to an intermediate form that
also embodies a simple sequential machine, and the need for efficient JIT
severely limits how the compiler can optimize. Fully natively compiled lan-
guages or those with more powerful intermediate forms may have compil-
ers that can perform aggressive optimizations (such as auto-vectorization) in
specific circumstances, but these techniques tend to be fragile and provide
limited results. In C and C++, the language provides fairly low-level-detail
control over the emitted instructions, and the compilers often support hard-
ware-specific language extensions to access SIMD instructions and other
unique hardware features. With careful, labor-intensive techniques, highly
specialized platform-specific code can be written to dramatically improve
performance. This kind of code optimization requires substantial expertise,
detailed knowledge of the hardware platform, and a great deal of time, and it
incurs substantial maintenance costs. On modern hardware it commonly de-
livers 4–20x performance improvements, raising the 3% utilization into the
10–60% range. Notice that this is as good as or better than the improvement
you might expect by going from a single- to a many-threaded processor. Not
all problems can be optimized in this fashion, but more are amenable to it
than most developers seem to think. This kind of data-parallel solution also
tends to be more amenable to being divided across multiple threads, making
it easier to achieve thread-level concurrency. Unfortunately, the aforemen-
tioned problems make the process of experimentation and exploration to
find efficient new data-parallel solutions very difficult and expensive.

Achieving a high level of instruction-level concurrency boils down to writ-
ing code that fits into a set of constraints. The precise definition of these
constraints depends on the hardware, but there are some general principles
that apply. Choose data structures and access patterns that are uniform and
predictable, organize data so that access to it is spatially and temporally
dense, choose data structure alignments and sizes, apply precisely the same
sequence of operations to many data elements, minimize data dependencies

; LO G I N : J U N E 20 0 8	 d ri v ing language s to a Concurrent Future	 47

48	 ; LO G I N : VO L . 33, N O. 3

across parallel elements, define interfaces where each interaction specifies a
large amount of work to be performed, and so forth.

Unfortunately, most programming languages do nothing to aid the program-
mer in these pursuits, if they allow these things to be under explicit pro-
grammer control at all. Even worse, code written in these languages contains
too much detail (i.e., the semantic information available to the compiler is
at a very primitive level) and this limits what the compilers are capable of
and what they are permitted to do by the language rules. There are a few
languages and alternative notations available (Michael McCool’s own Rapid-
Mind being one proprietary example; others are StreamIt, Intel’s Ct, etc.),
but they are far from pervasive and thus far there is no widely available stan-
dard that integrates tightly enough with the standard environments (such as
C/C++) to be adopted. Tight integration and, where possible, familiar syntax
are essential for practical efficiency reasons, for programmer comfort, and
for gradual adoption by an industry heavily invested in existing languages.
Exactly what such a language should look like is open to debate, but my
opinion is that burdening an existing grammar of already excessive com-
plexity is not the correct solution.

Thread-level Concurrency

Thread-level concurrency tends to receive more attention, largely because it
is easier to see and understand. It is accomplished in most languages by call-
ing a threading interface provided by the OS, including it in a support li-
brary, or as a language feature. These vary in their details and features. The
detailed semantics and capabilities of how threads work between platforms
and interfaces vary significantly. How they get scheduled to run, whether
priorities can be set, how the threads interact based on these priorities,
whether a given software thread will stay on a given hardware thread, how
long it will run without being interrupted, and so on can show up latent
bugs and result in noteworthy performance differences that are hard to di-
agnose.

Threads running concurrently will inevitably want to interact and will
therefore need to access some piece of shared state. This generally isn’t a
problem until one or more of the threads want to modify the shared state.
Then we run into a problem called the “lack of atomicity.” Most operations
are actually composed of several hardware operations. Incrementing an in-
teger variable, for example, reads the value from memory into a register,
performs the add operation, then stores the value back to memory. Even
with hardware that has an instruction that appears to add a value directly
to memory, it in reality implements this internally as an read–modify–write
sequence. When each of these operations is a pipelined instruction, which
is itself broken down into many stages, it should be clear that there are a lot
of steps involved in doing even this most trivial of examples. When these
steps are happening in a machine where there are additional threads sharing
the memory location being modified, the possibility exists of conflicting up-
dates. Exactly what happens to the value depends on the operation, its hard-
ware implementation, and the precise timing of each incident of conflicting
change. This means that even this trivial example can do something differ-
ent every time it is executed, and even if timing were somehow stable, then
executing on different (even nominally compatible) hardware may impact
the outcome.

Many thread interfaces provide some basic “atomic operations.” These func-
tions use capabilities provided by the processor to ensure atomicity for this
kind of simple read–modify–write operation. Usually the hardware provides

a base mechanism to use instead of the atomic operation itself. This is usu-
ally either a compare-and-set operation or a reserve-and-conditional-store
operation. I’m not going to describe what these two things are here, but the
salient point is that using them correctly and ensuring atomicity is signifi-
cantly more expensive in terms of complexity, instructions, performance,
and programmer knowledge than just a simple nonatomic operation. They
also don’t guarantee atomicity across a series of operations.

An important point to note about primitive hardware synchronization op-
erations is that they cause the hardware to synchronize. This seemingly triv-
ial point has unfortunate consequences. It usually means that at least part
of the hardware must stop and wait for some set of operations to complete,
and often this means requests on the memory bus. This interferes with the
bandwidth across the bus, which is one of the system’s key performance bot-
tlenecks. The more aggressive the processor is about concurrent and out-of-
order operations, the more there is to lose by forcing it to synchronize.

The problem with the lack of atomicity goes far deeper than the trivial incre-
ment example just cited. Consider this simple piece of C code:

int done;	// assume this is an initialized shared variable
if (done == 0)
{
	 // do “stuff” here that you want to happen once
	 done = 1;
}

If you have two threads and they try to execute this code at the same time,
then both may perform the test and do the “stuff” before done is set to 1.
You may think that by putting the done=1 before doing the “stuff” you can
fix the problem, but all you will do is make it happen less often. The in-
stant that done is read for the comparison, another thread may come along
and read the same value so that it can make the same test succeed. Subtle
changes in the hardware or OS can dramatically impact how often this code
fails in practice. One solution to this example is to use an atomic operation
that your threading interface provides, but this doesn’t get you very far, be-
cause it will provide only a limited set of atomic operations and you can’t
restrict your programming to just using those!

Synchronization

The standard solution to this is to use synchronization primitives. Each
threading interface provides some set of “synchronization primitives.” These
are usually fairly similar among interfaces, but the semantics can differ in
subtle but important ways. Each primitive also brings with it different per-
formance implications. Using some lightweight synchronization, even if
blocking or waiting doesn’t happen, might consume only a few tens or hun-
dreds of cycles, whereas others might consume thousands (possibly many,
many thousands). And this is the cost if there is no contention between
threads!

Most of these primitives are in the form of a lock /unlock pair of operations.
In some cases it is called enter/ leave instead of lock /unlock because the
pair is defining a “critical section” of code that you enter with the lock (or
enter) operation and that you exit with the unlock (or leave) operation.
Only a single thread can be inside such a critical section at a time. Other
threads attempting to enter are forced to wait until the one in the critical
section leaves it (i.e., they are “mutually excluded,” which is shortened to
“mutex”). This ensures that the code in the critical section is executed atomi-

; LO G I N : J U N E 20 0 8	 d ri v ing language s to a Concurrent Future	 49

50	 ; LO G I N : VO L . 33, N O. 3

cally. Unfortunately, this also forces this part of the program to be effectively
single-threaded, and spending too much time in critical sections reduces
your performance to that of a single hardware thread (or less, since execut-
ing synchronization primitives has a cost).

int done;	 // assume this is an initialized shared variable
enter_critical_section();
if (done == 0)
{
	 // do stuff here that you want to happen once
	 done = 1;
}
leave_critical_section();

From this you might think that synchronization is only needed when a
value is going to be modified. Unfortunately this isn’t so.

int *p;	 // assume this is an initialized shared variable
if (p != NULL)
{
	 if (*p == 0)
	 {
		 // do something wonderful
	 }
}

Here we are testing p to be sure that it is valid before using it. Unfortunately,
some other code might come along and modify it (to NULL, for example)
before it is dereferenced, causing unexpected behavior, an outright crash, or
an exception.

One idea to attempt a fix might be this:

int *p;	 // assume this is an initialized shared variable
int *mycopy = p;
if (mycopy != NULL)
{
	 if (*mycopy == 0)
	 {
		 // do something wonderful
	 }
}

However, this can be a disaster as well. The memory referenced by p is part
of the shared state, so simply making a copy of the pointer doesn’t solve the
problem. For example, another thread could deallocate the memory refer-
enced by p or otherwise repurpose it. In a garbage-collected language the
object will not have been deallocated, but if p now references a different ob-
ject than mycopy you may be relying on (or changing) stale data. In other
situations this might be a valid and efficient strategy.

There are likely to be multiple places in the code that modify a particular
piece of shared state, so we need to be able to lock them all to make them
mutually exclusive. To allow this, synchronization primitives are almost al-
ways objects—mutex objects, critical section objects, etc. The lock/unlock
operations become methods, and all the normal issues of creation and life-
time management come into play. A synchronization object is a piece of
shared state that is used to arbitrate between threads.

mutex m;	 // assume this is initialized shared state
int *p;	 // assume this is an initialized shared variable

m.lock();
if (p != NULL)
{
	 if (*p == 0)
	 {
		 // do something wonderful
	 }
}
m.unlock();

One obvious problem with this is that it becomes easy to forget the unlock
operation or to retain the lock for long periods of time. This is particularly
an issue if the lock and unlock operations are enacted indirectly through a
higher-level piece of code via an interface, or if expensive function calls to
other subsystems are made while the lock is held.

To mitigate these problems some threading interfaces provide lexically
scoped synchronization. For example, in C#:

object m;
int *p;	 // assume this is an initialized shared variable
lock (m)
{
	 if (p != NULL)
	 {
	 if (*p == 0)
		 {
			 // do something wonderful
		 }
	 }
}

Synchronization primitives are shared resources, and in C++ it is appropri-
ate to apply the resource acquisition through a construction paradigm, as in,
for example:

class MutexLock
{
public:
	 MutexLock (Mutex m) : mMutex(m) { mMutex.Lock(); }
	 ~MutexLock () { mMutex.Unlock(); }
private:
	 Mutex mMutex;
};

As a project grows in size and more code needs to operate concurrently, a
program will come to have multiple synchronization objects. A new problem
arises in code with multiple synchronization primitives: deadlock. Imagine
two threads (#1 and #2), which are using two mutexes (A and B). Now con-
sider what happens in this scenario: Thread #1 acquires mutex A, thread
#2 acquires mutex B, thread #1 attempts to acquire mutex B (and blocks
until #2 releases it), and finally thread #2 attempts to acquire mutex A (and
blocks until #1 releases it). These two threads are now stopped, each waiting
for the other to release its resource, which of course they cannot do, because
they are stopped.

Deadlock is relatively simple to be aware of and to avoid in a simple piece
of software. It becomes considerably more complex to avoid in larger pieces
of software. One solution is to use a single mutex instead of two different
ones. Some early threaded operating systems adopted this approach to pro-

; LO G I N : J U N E 20 0 8	 d ri v ing language s to a Concurrent Future	 51

52	 ; LO G I N : VO L . 33, N O. 3

tect their internal resources. The problem with this approach was, as previ-
ously described, that the program can rapidly degenerate to being effectively
single-threaded. The more hardware threads you have, the more of a loss
this is.

An alternative to sharing mutexes widely is to avoid shared state and to use
no other systems from within critical sections. In large projects this can be-
come difficult or impossible. Powerful and important design patterns such
as delegates and iterators can lead to unexpected situations where deadlock
is possible.

The term “thread safety” is often used to describe objects (or systems) that
are designed to be used from multiple threads simultaneously. It is often not
clear what is meant by an object being thread-safe. One approach is to sim-
ply make each of the methods in the object lock a mutex while it executes to
ensure that the object’s state remains consistent during the call. That does
not ensure that the object’s state remains consistent between calls. For ex-
ample, in C++ with STL:

vector<int> a;					 // assume this is shared
int len = a.size();				 // assume this is a synchronized op
int last_value = a[len-1];	// ... and so is this one

This code can fail even though all the operations on a are individually
thread-safe. If another thread removes an element from a after the count is
retrieved, then this thread will index past the end. If another thread adds an
element to a, then it won’t be the last value that is retrieved.

A naive solution to this problem is to provide a lock/unlock operation as
part of the object’s interface. The user of the object holds the lock while
working with it. Unfortunately, working on objects in isolation is rare—most
interesting code uses multiple objects to accomplish something interest-
ing. If more than one of those objects uses this approach, you may now find
yourself in a potential deadlock situation. One example of this arises when
iterating across containers. What happens if another thread changes the con-
tainer while it is being iterated? The .NET framework’s containers, for exam-
ple, throw an exception if this happens. The code doing the iteration must
ensure that this cannot happen. The obvious solution is to lock a mutex for
the duration of the iteration, but heavily used or large containers or slow
per-element operations can make this prohibitively expensive. Furthermore,
if the operation involves calls to other code (such as methods on the objects
from the container), then deadlock can become an issue. A common exam-
ple is moving objects from one container to another where both containers
are using this locking strategy.

Amdahl’s Law

It is useful to understand Amdahl’s Law as it applies to concurrency. It actu-
ally applies to the principle of optimization in general, but here I’ll just point
out its implication with respect to synchronization. The time to execute a
program is equal to the sum of the time required by the sequential and par-
allel parts of the program: T = S + P. Optimizations to the sequential part
can reduce S, and optimizations to the parallel part can reduce P. The obvi-
ous optimization to the parallel part is to increase the number of processors.
Twice as many processors might reduce P by 2; an infinite number might
reduce it to virtually nil. If the split between S and P cannot be changed,
however, then the maximum speedup possible by parallel optimizations is
1/S (i.e., P has gone to zero). If the sequential part of the program is 50% of
the execution time, adding an infinite number of processors will only double

its performance! It should therefore be clear that minimizing the amount of
time spent in sequential parts of the program (i.e., critical sections or hold-
ing mutex locks) is essential to performance scaling.

One important point about the preceding paragraph is whether the split be-
tween S and P can be changed. Changing this split is a powerful approach,
akin to improving your algorithm instead of your implementation. It can be
accomplished in three basic ways. The obvious, although difficult, one is to
replace some of your sequential work with parallel equivalents. The second
is simply to not do some of the sequential work, which is not always an op-
tion but sometimes worth considering. And the third is to do more paral-
lel work. The parallel work is what will scale with increasingly concurrent
hardware, so do more of it.

Conclusions

The point of this discussion of threaded programming is not to enumerate
all the potential pitfalls of threaded programming. Nor do I claim that there
aren’t solutions to each of these individual problems, even if they require
careful design and implementation and rigorous testing. What I am trying to
convey is that there is a minefield of nasty, subtle, intractable problems and
that the programming model embodied by the common programming lan-
guages does nothing to help the programmer deal with it. These languages
were conceived for programming computers that no longer exist.

So what, with respect to concurrency, might a language and compiler take
care of that could make life easier for the programmer? Here’s a sampling
(none of which I’m going to explain), just to give you an idea: structure and
field alignment, accounting for cache line size and associativity, account-
ing for cache read/write policies, using cache prefetch instructions, account-
ing for automatic hardware prefetching, dealing with speculative hardware
execution (particularly stores), leveraging DMA hardware, using a context
switch versus spin-lock synchronization, dealing with variables co-inhab-
iting cache lines, loading variables into different register sets based on ca-
pabilities versus cost of inter-set moves versus usage, dealing with different
register sizes, handling capability and precision differences among data
types, organizing vectors of structures based on algorithmic usage and mem-
ory system in-flight transaction capabilities, vector access patterns based
on algorithms and hardware load/store/permute capabilities, compare and
branch versus bitwise math, branching versus selection, dealing with reg-
ister load/store alignment restrictions, choosing SoA versus AoS in-memory
and in-register organizations, hoisting computations from conditionals to
fill pipeline stalls, software pipelining of loops, organizing and fusing loops
based on register set size, selecting thread affinities, latching shared val-
ues for atomicity, object synchronization, trade-off between instruction and
thread-level parallelism, and leveraging hardware messaging and synchroni-
zation capabilities. Any one of these things can result in doubling the perfor-
mance of your algorithm and, although they may not combine linearly, you
typically have to get them all right to get close to maximum performance.
And many of them will break your code if you get them wrong. Some of
them will simply make your code nonportable and fragile.

There are alternative categories of languages, and some of these offer pro-
gramming models with strong advantages in concurrent programming.
Functional languages (e.g., Haskell, Lisp, APL, ML, Erlang) offer some pow-
erful advantages, but most bring with them various disadvantages and none
is mainstream. Array programming languages (e.g., APL, MATLAB) are pow-
erfully expressive of data parallel concepts but have limitations and haven’t

; LO G I N : J U N E 20 0 8	 d ri v ing language s to a Concurrent Future	 53

54	 ; LO G I N : VO L . 33, N O. 3

reached their full potential in terms of optimization—and they typically
eschew the object-oriented paradigms that are now deeply (and rightfully)
entrenched in modern software development. Less traditional programming
models and languages exist that embody powerful concurrent concepts such
as message-passing objects networks (e.g., Microsoft’s Robotics Studio), but
they are far from standard, are not portable, and typically cannot be inte-
grated into existing environments. Highly specialized languages and tools
such as StreamIt, RapidMind, and cT also suffer from the same issues. A few
very successful specialized languages exist, particularly in the domain of
graphics: HLSL, GLSL, and Cg have given graphics software and hardware
developers tremendous power and flexibility. They have integrated well into
existing software systems, and being part of the C language family makes
them readily accessible to the C/C++/Java/C# communities. The wide adop-
tion of these shading languages gives some indication of and hope about
what is possible. All of these alternatives point in directions in which we can
take our programming languages and models in the future.

suggested reading

Video of Herb Sutter’s talk “Machine Architecture: Things Your Program-
ming Language Never Told You” at NWCPP on September 19, 2007:
http://video.google.com/videoplay?docid=-4714369049736584770.

Slides for Sutter’s talk: http://www.nwcpp.org/Meetings/2007/09.html.

Michael D. McCool, “Achieving High Performance by Targeting Multiple
Hardware Mechanisms for Parallelism,” ;login:, April 2008.

Transactional memory: http://research.microsoft.com/~simonpj/papers/stm/
index.htm.

Language taxonomy: http://channel9.msdn.com/Showpost.aspx?postid
=326762.

Nested data parallelism: http://research.microsoft.com/~simonpj/papers/
ndp/NdpSlides.pdf.

Erlang: http://www.sics.se/~joe/talks/ll2_2002.pdf.

P. Grogono and B. Shearing, “A Modular Programming Language Based on
Message Passing”: http://users.encs.concordia.ca/~grogono/Erasmus/E01.pdf.

