
D a n T s a fr i r , D i l m a D a S i lv a , a n d
D a v i d W a g n e r

the murky issue of
changing process
identity: revising
“setuid demystified”
Dan Tsafrir is a postdoctoral researcher at the IBM
T.J. Watson Research Center in New York. He is a
member of the advanced operating systems group
and is interested in various aspects of operating
systems.

dants@us.ibm.com

Dilma da Silva is a researcher at the IBM T.J. Watson
Research Center in New York. She manages the
Advanced Operating Systems group. Prior to joining
IBM, she was an Assistant Professor at University of
Sao Paulo, Brazil. Her research in operating systems
addresses the need for scalable and customizable
system software.

dilmasilva@us.ibm.com

David Wagner is a professor in the computer
science division at the University of California at
Berkeley. He studies computer security, cryptogra-
phy, and electronic voting.

daw@cs.berkeley.edu

D r o p p i n g u n n e e d e d p r o c e s s p r i v i -
leges promotes security but is notoriously
error-prone because of confusing set*id sys-
tem calls with unclear semantics and subtle
portability issues. To make things worse,
existing recipes to accomplish the task are
lacking, related manuals can be misleading,
and the associated kernel subsystem might
contain bugs. We therefore proclaim the
system as untrustworthy when it comes to
the subject matter, and we suggest a defen-
sive, easy-to-use solution that addresses all
concerns.

Whenever you run a program, it assumes your
identity and you lend it all your power: Whatever
you’re allowed to do, it too is allowed. This in-
cludes deleting your files, killing your other pro-
grams, changing your password, and retrieving
your mail, for example. Occasionally, you need to
write programs that enhance the power of oth-
ers. Consider, for example, a Mahjongg game that
maintains a high-score file. Of course, making the
file writeable by all is not a very good idea if you
want to ensure that no one cheats, so Mahjongg
must somehow convey to players the ability to up-
date the file in a controlled manner. In UNIX sys-
tems this is done as follows: When a game ends,
if the score is high enough, Mahjongg temporarily
assumes the identity of the file’s owner, makes the
appropriate modifications, and switches back to the
identity of the original player.

Many standard utilities work this way, includ-
ing passwd and chsh (which update /etc/passwd),
xterm (which updates utmp usage information),
su (which changes user), sudo (which acts as root),
and X (which accesses interactive devices). The
common feature of these tools is that they know
their real identity is of a nonprivileged user, but
they have the ability to assume a privileged iden-
tity when required. (Note that “privileged” doesn’t
necessarily mean root; it merely means some other
identity that has the power to do what the real user
can’t.) Such executables are collectively referred as
“setuid programs,” because (1) they must be ex-
plicitly associated with a “setuid bit” (through the
chmod command) and (2) they pull off the iden-
tity juggling trick through the use of set*id system
calls (setuid (2), setreuid (2), and all their friends).

There’s another, often overlooked, type of program
that can do identity juggling but does not have an
associated setuid bit. These start off as root pro-

; LO G I N : J U N E 20 0 8	 Th e Mur k y I ssue of Ch anging Proce ss I d entity	 55

56	 ; LO G I N : VO L . 33, N O. 3

cesses and use set*id system calls to change their identity to that of an or-
dinary nonprivileged user. Examples include the login program, the cron
daemon (which runs user tasks at a specified time), daemons providing ser-
vice to remote users by assuming their identity (sshd, telnetd, nfs, etc.), and
various mail server components.

Both types of programs share a similar philosophy: To reduce the chances
of their extra powers being abused, they attempt to obey the principle of
least privilege, which states that “every program and every user of the sys-
tem should operate using the least set of privileges necessary to complete the
job” [16]. For setuid programs this translates to:

1.	 minimizing the number and duration of the time periods at which the
program temporarily assumes the privileged identity, to reduce the
negative effect that programming mistakes might have (e.g., mistakenly
removing a file as root can have far greater negative implications than
doing it when the nonprivileged identity is in effect), and

2.	 permanently giving up the ability to assume the privileged identity as
soon as it’s no longer needed, so that if an attacker gains control (e.g.,
through a buffer overflow vulnerability), the attacker can’t exploit those
privileges.

The principle of least privilege is a simple and sensible rule. But when it
comes to identity-changing programs (in the immortal words of The Essex
[7] or anybody who ever tried to lose weight [14]) it’s easier said than done.
Here are a few quotes that may explain why it’s at least as hard as doing a
diet: Chen et al. said that “for historical reasons, the uid-setting system calls
are poorly designed, insufficiently documented, and widely misunderstood”
and that the associated manuals “are often incomplete or even wrong” [2].
Dean and Hu observed that “the setuid family of system calls is its own rat’s
nest; on different UNIX and UNIX-like systems, system calls of the same
name and arguments can have different semantics, including the possibil-
ity of silent failures” [3]. Torek and Dik concluded that “many years after the
inception of setuid programs, how to write them is still not well understood
by the majority of people who write them” [17]. All these deficiencies have
made the setuid mechanism the source of many security vulnerabilities.

It has been more than 30 years since Dennis Ritchie introduced the setuid
mechanism [15] and more than 20 years since people started publishing pa-
pers about how to correctly write setuid programs [1]. The fact that this ar-
ticle has something new to say serves as an unfortunate testament that the
topic is not yet resolved. Our goal in this paper is to provide the equivalent
of a magical diet pill that effortlessly makes you slim (or at least lays the
foundation for this magic). Specifically, we design and implement an intui-
tive change-identity algorithm that abstracts away the many pitfalls, con-
fusing details, operating-system-specific behavior, and portability issues.
We build on and extend the algorithm proposed by Chen et al. [2], which
neglected to factor in the role that supplementary groups play in forming
an identity. Our code is publicly available [18]. It was extensively tested on
Linux 2.6.22, FreeBSD 7.0-STABLE, OpenSolaris, and AIX 5.3. We warn
that, given the history of subtle pitfalls in the set*id syscalls, it may be pru-
dent for developers to avoid relying upon our algorithm until it has been
subject to careful review by others.

User Identity vs. Process Identity

Before attempting to securely switch identities, we need to define what the
term “identity” means. In this context, we found it productive to make a dis-

tinction between two types of identities: that of a user and that of a process.
The user’s credentials include the user ID (uid), the user’s primary group
(gid), and an additional array of supplementary groups (sups). Collectively,
they determine which system resources the user can access. In particular, a
zero uid is associated with the superuser (root) who can access all resources.
We define the ucred_t type to represent a user by aggregating these three
fields, as follows:

typedef struct supplementary_groups {
	 gid_t *list;		 //	sorted ascending, no duplicates
	 int size;	 //	number of entries in 'list'
} sups_t;

typedef struct user_credentials {
	 uid_t		 uid;
	 gid_t		 gid;
	 sups_t	sups;
} ucred_t;

Things are a bit more complicated when it comes to the corresponding pro-
cess credentials. Each process has three user IDs: real (ruid), effective (euid),
and saved (suid). The real uid identifies the “owner” of the process, which
is typically the executable’s invoker. The effective uid represents the identity
in effect, namely, the one used by the OS (operating system) for most access
decisions. The saved uid stores some previous user ID, so that it can be re-
stored (copied to the euid) at some later time with the help of set*uid system
calls. Similarly, a process has three group IDs: rgid, egid, and sgid. We de-
fine the pcred_t type to encapsulate the credentials of a process:

typedef struct user_ids		 { uid_t r, e, s;	 }		 uids_t;
typedef struct group_ids	 { gid_t r, e, s;	 }		 gids_t;

typedef struct process_credentials {
	 uids_t	 uids;			 // uids.r	=	ruid, uids.e	 =	euid, uids.s	 =	suid
	 gids_t	 gids;			 // gids.r	=	rgid, gids.e	 =	egid, gids.s	 =	sgid
	 sups_t	sups;
} pcred_t;

Supplementary groups can be queried with the help of the getgroups sys-
tem call. The ruid, euid, rgid, and egid of a process can be retrieved with
getuid, geteuid, getgid, and getegid, respectively. The ways to find out
the values of suid and sgid are OS-specific.

In Linux, each process also has an fsuid and an fsgid, which are used for
access control to the file system. Normally, these are equal to the euid and
egid, respectively, unless they are explicitly changed [11]. As this rarely used
feature is Linux-specific, it is not included in the aforementioned data struc-
tures. To ensure correctness, our algorithm never manipulates the fsuid or
fsgid, ensuring that (if programs rely only upon our interface for manipulat-
ing privileges) the fsuid and fsgid will always match the euid and egid.

The benefit of differentiating between user and process identities is that the
former is more convenient to work with, easier to understand, better cap-
tures the perception of programmers regarding identity, and typically is all
that is needed for programmers to specify what kind of an identity they re-
quire. In other words, the notions of real, effective, and saved IDs are not
important in their own right; rather, they are simply the technical means by
which identity change is made possible. Note, however, that “user” isn’t an
abstraction that is represented by any kernel primitive: The kernel doesn’t
deal with users; it deals with processes. It is therefore the job of our algo-
rithm to internally use pcred_t and provide the appropriate mappings.

; LO G I N : J U N E 20 0 8	 Th e Mur k y I ssue of Ch anging Proce ss I d entity	 57

58	 ; LO G I N : VO L . 33, N O. 3

Rules of Identity Juggling

identity propagation and split personalities

The second thing one has to consider when attempting to correctly switch
identities is the manner by which processes initially get their identity. When
a user rik logs in, the login program forks a process P and sets things up
such that (1) P’s three uids hold rik’s uid, (2) P’s three gids hold rik’s pri-
mary group, and (3) P’s supplementary array is populated with the gids of
the groups to which rik belongs. The process credentials are then inherited
across fork. They are also inherited across exec, unless the corresponding
executable E has its setuid bit set, in which case the effective and saved uids
are set to be that of E’s owner (but the real uid remains unchanged). Like-
wise, if E is setgid, then the saved and effective groups of the new process
are assigned with E’s group.

Conversely, the supplementary array is always inherited as is, even if E’s set
uid/setgid bits are set. Notice that this can lead to a bizarre situation where
E is running with a split personality: The effective user and group are of E’s
owner, whereas the supplementary groups are of E’s invoker. This isn’t nec-
essarily bad (and in fact constitutes the typical case), but it’s important to
understand that this is what goes on.

user id juggling

Since access control is based on the effective user ID, a process gains privi-
lege by assigning a privileged user ID to its euid, and drops privilege by re-
moving it. To drop privilege temporarily, a process removes the privileged
user ID from its euid but stores it in its saved ID; later, the process may
restore privilege by copying this value back to the euid. To drop privilege
permanently, a process removes the privileged user ID from all three uids.
Thereafter, the process can never restore privilege.

Roughly speaking, there typically exists some technical way for a process to
copy the value from one of its three uids to another, and thus perform the
uid juggling as was just described. If the process is nonroot (uid =/ 0), then
that’s all it can do (juggle back and forth between the real and saved uids).
Root, however, can assume any identity.

primary group juggling

The rules of changing gids are identical, with the exception that egid=0
doesn’t convey any special privileges: Only if euid=0 can the process set ar-
bitrary gids.

supplementary groups juggling

The rules for changing supplementary groups are much simpler: If a process
has euid=0, it can change them however it likes through the setgroups sys-
tem call. Otherwise, the process is forbidden from using setgroups and is
stuck with the current setting. The implications for setuid programs are in-
teresting. If the setuid program drops privileges (assuming the identity of its
invoker), then the supplementary groups will already be set appropriately.
However, until that happens, the program will have a split personality. A se-
tuid-root program can set the supplementary groups to match its privileged
identity, if it chooses. However, nonroot setuid programs cannot: They will
suffer from a split personality for as long as they maintain their privileged

identity, and there’s simply no way around it. As a result, nonroot setuid
programs might run with extra privileges that their creators did not antici-
pate.

messiness of setuid system calls

Several standard set*id system calls allow programmers to manipulate the
real, effective, and saved IDs, in various ways. To demonstrate their prob-
lematic semantics, we focus on only setuid (2) through an example of a vul-
nerability found in a mainstream program. Googling the word “setuid” with
“vulnerability” or “bug” immediately brings up many examples that are suit-
able for this purpose. But to also demonstrate the prevalence of the problem,
we attempted to find a new vulnerability. Indeed, the first program we ex-
amined contained one.

Exim is a popular mail server that is used by default in many systems [5].
Figure 1 shows the function exim uses to drop privileges permanently, taken
from the latest version available at the time of this writing [6]. It implicitly
assumes that calling setuid will update all three uids, so that all privileges
are permanently relinquished. This assumption indeed holds for some OSes
(e.g., FreeBSD). But if the effective ID is nonzero (which may be the case ac-
cording to the associated documentation) then the assumption doesn’t hold
for Linux, Solaris, and AIX, as the semantics of setuid under these circum-
stances dictate that only the euid will be updated, leaving the ruid and suid
unchanged. Consequently, if exim is compromised, the attacker can restore
exim’s special privileges and, for example, obtain uncontrolled access to all
mail in the system.

Although this particular vulnerability isn’t nearly as dangerous as some pre-
viously discovered setuid bugs, it does successfully highlight the problematic
system call behavior, which differs not only between OSes but also accord-
ing to the current identity.

/*
/* This function sets a new uid and gid permanently, optionally calling
/* initgroups() to set auxiliary groups. There are some special cases when
/* running Exim in unprivileged modes. In these situations the effective
/* uid will not be root; [...]
/*/
void exim_setugid(uid_t uid, gid_t gid, BOOL igflag, uschar *msg)
{
	 uid_t euid	 =		 geteuid();
	 gid_t egid	 =		 getegid();

	 if (euid	==	 root_uid | | euid != uid | | egid != gid | | igflag) {

		 if (igflag) {
			 /* do some supplementary groups handling here */ ...
		 }

		 if (setgid(gid) < 0 | | setuid(uid) < 0) {
			 /* PANIC! */ ...
		 }
	 }
}

F i g u r e 1 : E x i m ’ s co d e t o p e r m a n e n t ly c h a n g e i d e n t i t y
co n t a i n s a v u l n e r a b i l i t y.

; LO G I N : J U N E 20 0 8	 Th e Mur k y I ssue of Ch anging Proce ss I d entity	 59

60	 ; LO G I N : VO L . 33, N O. 3

Safely Dropping Privileges

Equipped with a good understanding of the subject, we go on to develop an
algorithm to safely drop privileges permanently. We do so in a top-down
manner, making use of the ucred_t and pcred_t types previously defined.
Figure 2 (facing page) shows the algorithm. Its input parameter specifies the
target identity; the algorithm guarantees to permanently switch to the tar-
get identity or clearly indicate failure. The algorithm works by first changing
the supplementary groups, then changing the gids and changing the uids (in
that order), and, finally, checking that the current identity matches the tar-
get identity.

error handling

There are two ways to indicate failure, depending on how the macros
DO_CHK and DO_SYS are defined:

#ifdef LIVING_ON_THE_EDGE
#	 define DO_SYS(call)		 if((call) == -1)	 return -1		 /* do system call		 */
#	 define DO_CHK(expr)		 if(! (expr))	 return -1		 /* do boolean check 	*/
#else
#	 define DO_SYS(call)		 if((call) == -1) 	abort()			 /* do system call		 */
#	 define DO_CHK(expr)		 if(! (expr)	 abort()			 /* do boolean check	*/
#endif

But although reporting failure through return values is possible, we advise
against it, as it might leave the identity in an inconsistent state. Thus, when
an identity change fails in the middle, programmers should either abort or
really know what they’re doing.

input check

The ucred_is_sane function checks the validity of the input parameter. It
is implemented as follows:

long nm = sysconf(_SC_NGROUPS_MAX);
return (nm >= 0) && (nm >= uc->sups.size) && (uc->sups.size >= 0) &&
		 uc->uid != (uid_t) -1 &&
		 uc->gid != (gid_t) -1;

The maximal size of the supplementary groups may differ between systems,
but it can be queried in a standard way. We also check that the user and
group IDs aren’t -1, because this has special meaning for several set*id sys-
tem calls (“ignore”).

verification

The first chunk of code in Figure 2 is responsible for setting the supplemen-
tary groups to uc->sups, the three gids to g, and the three uids to u. Set-
ting the uids last is important, because afterward the process might lose its
privilege to change its groups. Setting supplementary groups before primary
groups is also important, for reasons to become clear later on. The remain-
der of the function verifies that all of these operations successfully changed
our credentials to the desired identity. This policy is required in order to
prevent mistakes in the face of the poorly designed set*id interface (e.g., this
policy would have prevented the exim vulnerability), to protect against pos-
sible

int drop_privileges_permanently(const ucred_t *uc /*target identity*/)
{
	 uid_t u		 =		 uc->uid;
	 gid_t g		 =		 uc->gid;
	 pcred_t	 pc;

	 DO_CHK(ucred_is_sane(uc));
	 DO_SYS(set_sups(&uc->sups));
	 DO_SYS(set_gids(g/*real*/, g/*effective*/, g/*saved*/));
	 DO_SYS(set_uids(u/*real*/, u/*effective*/, u/*saved*/));

	 DO_SYS(get_pcred(&pc));
	 DO_CHK(eql_sups (&pc.sups , &uc->sups));
	 DO_CHK(g	==	 pc.gids.r	 &&	g	 ==	pc.gids.e	 &&	g	==	 pc.gids.s);
	 DO_CHK(u	==	 pc.uids.r	 &&	u	 ==	pc.uids.e	 &&	u	==	 pc.uids.s);
	 free(pc.sups.list);

#if defined(__linux__)
	 DO_SYS(get_fs_ids(&u, &g));
	 DO_CHK(u	==	 uc->uid	&&	g	==	 uc->gid);
#endif

	 return 0;		 /* success */
}

F i g u r e 2 : P e r m a n e n t ly s w i t c h i n g i d e n t i t y a n d v e r i f y i n g t h e
co r r e c t n e s s of t h e s w i t c h .

related kernel bugs [2] or noncompliant behavior (see below) and to defend
against possible future kernel changes. These reasons, combined with the
fact that having the correct identity is crucial in terms of security, provide
good motivation for our untrusting approach.

 querying process identity

The get_pcred function we implement fills the memory pointed to by the
pcred_t pointer it gets. We get the ruid, rgid, euid, and egid with the help
of the standard system calls getuid, getgid, geteuid, and getegid, respec-
tively. Unfortunately, there’s no standard way to retrieve saved IDs, so we
use whatever facility the OS makes available, as shown in Figure 3 on the
next page. The getresuid and getresgid nonstandard system calls are the
easiest to use and the most popular among OSes. AIX’s getuidx and get-
gidx also have easy semantics, whereas with Solaris the programmer must
resort to using Solaris’s /proc interface [10].

The supplementary groups are retrieved with the help of the standard get-
groups system call. To allow for easy comparison of supplementary arrays,
we normalize the array by sorting it and by removing duplicate entries, if
any exist. The array is malloced, and it should therefore be freed later on.

linux filesystem ids

In Linux, the fsuid is supposed to mirror the euid, as long as setfsuid isn’t
explicitly used [11], and the same goes for fsgid and egid. However, there
has been at least one kernel bug that violated this invariant [2]. Therefore, in
accordance with our defensive approach, the algorithm in Figure 2 explicitly

; LO G I N : J U N E 20 0 8	 Th e Mur k y I ssue of Ch anging Proce ss I d entity	 61

62	 ; LO G I N : VO L . 33, N O. 3

int get_saved_ids(uid_t *suid, gid_t *sgid)
{
#if defined(__linux__)			 | |	defined(__HPUX__)			 | | \

defined(__FreeBSD__)	 | |	defined(__OpenBSD__)	 | |	defined(__DragonFly__)
uid_t ruid, euid;
gid_t rgid, egid;
DO_SYS(getresuid(&ruid, &euid, suid));
DO_SYS(getresgid(&rgid, &egid, sgid));

#elif defined(_AIX)
DO_SYS(*suid = getuidx(ID_SAVED));
DO_SYS(*sgid = getgidx(ID_SAVED));

#elif defined(__sun__) | | defined(__sun)
prcred_t p;		 /* prcred_t is defined by Solaris */
int fd;
DO_SYS(fd = open("/proc/self/cred", O_RDONLY));
DO_CHK(read(fd, &p, sizeof(p)) == sizeof(p));
DO_SYS(close(fd));
*suid = p.pr_suid;
*sgid = p.pr_sgid;

#else
#	 error "need to implement, notably: __NetBSD__, __APPLE__, __CYGWIN__"

#endif
	 return 0;
}

F i g u r e 3 : G e t t i n g t h e s a v e d u i d a n d g i d i s a n O S - d e p e n d e n t
op e r a t i o n .

verifies that the fs-invariant indeed holds. As there is no getfsuid or
getfsgid, our implementation of get_fs_ids is the C equivalent of

grep Uid /proc/self/status | awk '{print $5}'		 # prints fsuid
grep Gid /proc/self/status | awk '{print $5}'		 # prints fsgid

setting uids and gids

The POSIX-standard interfaces for setting IDs are tricky, OS-dependent,
and offer no way to directly set the saved IDs. Consequently, nonstandard
interfaces are preferable, if they offer superior semantics. This is the design
principle underlying our implementation of set_uids and set_gids. The
implementation is similar in spirit to the code in Figure 3, but it is compli-
cated by the fact that nonprivileged processes are sometimes not allowed to
use the preferable interface, in which case we fall back on whatever is avail-
able.

Specifically, all OSes that support getresuid (see Figure 3) also support
setresuid and setresgid. These offer the clearest and most consistent se-
mantics and can be used by privileged and nonprivileged processes alike.
(Of course the usual restrictions for nonprivileged processes still apply,
namely, each of the three parameters must be equal to one of the three IDs
of the process.) In Solaris, only root can use the /proc interface for setting
IDs [10], so with nonroot processes we naively use seteuid and setreuid
(and their gid counterparts) and hope for the best: The verification part in
Figure 2 will catch any discrepancies. In AIX, setuidx and setgidx are the
clearest and most expressive, and they can be used by both root and non-
root processes [13]. However, AIX is very restrictive: a nonroot process can

only change its effective IDs, so dropping privileges permanently is impos-
sible for nonroot processes; also, root processes are allowed to set euid, euid/
ruid, or euid/ruid/suid, but only to the same value.

supplementary groups caveats

Recall that nonroot processes are not allowed to call setgroups. Therefore,
to avoid unnecessary failure, setgroups is only invoked if the current and
target supplementary sets are unequal, as shown in Figure 4. (Disregard the
FreeBSD chunk of code for the moment.) Additionally, recall that after set-
ting the supplementary groups in Figure 2, we verify that this succeeded
by querying the current set of supplementary groups and checking that it
matches the desired value. In both cases the current and target supplemen-
tary sets must be compared. But, unfortunately, this isn’t as easy as one
would expect.

int set_sups(const sups_t *target_sups)
{
	 sups_t targetsups = *target_sups;

#ifdef __FreeBSD__
	 gid_t arr[targetsups.size + 1];
	 memcpy(arr+1, targetsups.list, targetsups.size * sizeof(gid_t));
	 targetsups.size			 =		 targetsups.size + 1;
	 targetsups.list			 =		 arr;
	 targetsups.list[0]		 =		 getegid();
#endif

	 if(geteuid() == 0) { // allowed to setgroups, let’s not take any chances
		 DO_SYS(setgroups(targetsups.size, targetsups.list));
	 }
	 else {
		 sups_t cursups;
		 DO_SYS(get_sups(&cursups));
		 if(! eql_sups(&cursups, &targetsups)) // this will probably fail... :(
			 DO_SYS(setgroups(targetsups.size, targetsups.list));
		 free(cursups.list);
	 }

	 return 0;
}

F i g u r e 4 : S e t t i n g s u ppl e m e n t a r y g r o u p s , w h i l e t r y i n g t o
a vo i d f a i l u r e of n o n r oo t p r oc e s s e s , a n d a cco m m o d a t i n g
n o n co m pl i a n t b e h a v i o r of F r e e BSD .

The POSIX standard specifies that “it is implementation-defined whether
getgroups also returns the effective group ID in the grouplist array” [9].
This seemingly harmless statement means that if the egid is in fact found
in the list returned by getgroups, there’s no way to tell whether this group
is actually a member of the supplementary group list. In particular, there is
no reliable, portable way to get the current list of supplementary groups. As
a result, our code for comparing the current and target supplementary sets
(see eql_sups in Figure 5, which is used in Figure 2 and Figure 4) assumes
that they match even if the current supplementary set contains the egid and
the target supplementary set doesn’t. This isn’t completely safe, but it’s the
best we can do, and it’s certainly better than not comparing at all.

; LO G I N : J U N E 20 0 8	 Th e Mur k y I ssue of Ch anging Proce ss I d entity	 63

64	 ; LO G I N : VO L . 33, N O. 3

bool eql_sups(const sups_t *cursups, const sups_t *targetsups)
{
	 int			 i, j, n	 =		 targetsups->size;
	 int			 diff		 =		 cursups->size - targetsups->size;
	 gid_t		 egid 	 =		 getegid();

	 if(diff > 1 | | diff < 0) return false;

	 for(i=0, j=0; i < n; i++, j++)
		 if(cursups->list[j] != targetsups->list[i]) {
			 if(cursups->list[j] == egid)	 i--; // skipping j
			 else 												 return false;
		 }

	 //	 If reached here, we're sure i==targetsups->size. Now, either
	 //	 j==cursups->size (skipped the egid or it wasn't there), or we didn't
	 //	 get to the egid yet because it's the last entry in cursups
	 return j		 ==		 cursups->size | |
		 (j+1 		 ==		 cursups->size && cursups->list[j] == egid);
}

F i g u r e 5 : W h e n co m p a r i n g t h e c u r r e n t s u ppl e m e n t a r y
a r r ay t o t h e t a r g e t a r r ay, w e i g n o r e t h e e g i d i f i t ’ s
i n cl u d e d i n t h e fo r m e r .

noncompliant freebsd behavior

Kernel designers might be tempted to internally represent the egid as just
another entry in the supplementary array, as this can somewhat simplify
the checking of file permissions. Indeed, instead of separately comparing
the file’s group against (1) the egid of the process and (2) its supplementary
array, only the latter check is required. The aforementioned POSIX rule that
allows getgroups to also return the egid reflects this fact. But POSIX also
explicitly states that “set[*]gid function[s] shall not affect the supplementary
group list in any way” [12]. And, likewise, setgroups shouldn’t affect the
egid. So such a design decision, if made, must be implemented with care.

The FreeBSD kernel has taken this decision and designated the first entry
of the supplementary array to the egid of the process. But the implement-
ers weren’t careful enough, or didn’t care about POSIX semantics [4]. When
trying to understand why the verification code in Figure 2 sometimes fails
in FreeBSD, we realized that the kernel ignores the aforementioned POSIX
rules and makes no attempt to mask the internal connection between egid
and the supplementary array. Thus, when changing the array through
setgroups, the egid becomes whatever happens to be the first entry of
the array. Likewise, when setting the egid (e.g., through setegid), the first
entry of the array changes accordingly, in clear violation of POSIX. The
code in the beginning of Figure 4 accommodates this noncompliant behav-
ior. Additionally, whenever we need to set the egid, we always make sure
to do it after setting the supplementary groups, not before (see Figure 2).

temporarily dropping and restoring privileges

Our implementation also includes functions to temporarily drop privileges
and to restore them. They are similar to Figure 2 in that they accept a “tar-
get identity” ucred_t argument, they treat supplementary groups identically,
and they verify that the required change has indeed occurred. When drop-
ping privileges temporarily, we change only the euid/egid if we can help it
(namely, if the values before the change are present in the real or saved IDs,

which means restoration of privileges will be possible). Otherwise we at-
tempt to copy the current values to the saved IDs before making the change.
(Unfortunately, this will fail on AIX for nonroot processes.) The algorithm
that restores privileges performs operations in the reverse order: first restor-
ing uids, and only then restoring groups; saved and real IDs are unaffected.

caution!

Identity is typically shared among threads of the same application. Conse-
quently, our code is not safe in the presence of any kind of multithreading:
Concurrent threads should be suspended, or else they run the risk of ex-
ecuting with an inconsistent identity. Likewise, signals should be blocked or
else the corresponding handlers might suffer from the same deficiency.

The algorithms described in this article do not take into account any capa-
bilities system the OS might have (e.g., “POSIX capabilities” in Linux [8]).
Capabilities systems, if used, should be handled separately.

Conclusion

Correctly changing identity is an elusive, OS-dependent, error-prone, and la-
borious task. We therefore feel that it is unreasonable and counterproductive
to require every programmer to invent his or her own algorithm to do so, or
to expect programmers to become experts on these pitfalls. We suggest that
the interests of the community would be better served by a unified solu-
tion for managing process privileges, and we propose the approach outlined
in this article as one possible basis for such a solution. Our code is publicly
available [18]. We welcome suggestions, bug reports, and extensions.

references

[1] M. Bishop, “How to Write a Setuid Program,” ;login 12(1) (Jan./Feb.
1987).

[2] H. Chen, D. Wagner, and D. Dean, “Setuid Demystified,” in 11th USENIX
Security Symp., pp. 171–190 (Aug. 2002).

[3] D. Dean and A.J. Hu, “Fixing Races for Fun and Profit: How to Use Ac-
cess(2),” in 13th USENIX Security Symp., pp. 195–206 (Aug. 2004).

[4] R. Ermilov, R. Watson, and B. Evans, [CFR] ucred.cr_gid, thread
from the FreeBSD-current mailing list: http://www.mail-archive.com/
freebsd-current@freebsd.org/msg28642.html (June 2001) (accessed March
2008).

[5] Exim Internet mailer: http://www.exim.org/ (accessed March 2008).

[6] Exim-4.69/src/exim.c, source code of exim 4.69: ftp://ftp.exim.org/
pub/exim/exim4/exim-4.69.tar.gz (accessed March 2008).

[7] W. Linton and L. Huff, “Easier Said Than Done,” performed by The Essex
(July 1963): http://www.youtube.com/watch?v=tgJ1ssTJtnA (accessed March
2008).

[8] Man capabilities(7)—Linux man page—overview of Linux capabilities:
http://linux.die.net/man/7/capabilities (accessed Mar 2008).

[9] Man getgroups(2)—the Open Group Base Specifications Issue 6,
IEEE Std 1003.1, 2004 edition: http://www.opengroup.org/online-
pubs/000095399/functions/getgroups.html (accessed March 2008).

; LO G I N : J U N E 20 0 8	 Th e Mur k y I ssue of Ch anging Proce ss I d entity	 65

66	 ; LO G I N : VO L . 33, N O. 3

[10] Man proc(4)—Solaris 10 reference manual collection: http://docs.sun.
com/app/docs/doc/816-5174/proc-4?l=en&a=view (accessed March 2008).

[11] Man setfsuid(2)—Linux man page: http://linux.die.net/man/2/setfsuid
(accessed March 2008).

[12] Man setgid(2)—the Open Group Base Specifications Issue 6, IEEE Std
1003.1, 2004 edition: http://www.opengroup.org/onlinepubs/000095399/
functions/setgid.html (accessed Jan. 2008).

[13] Man setuidx—AIX Technical Reference: Base Operating System and Ex-
tensions, Volume 2: http://publib.boulder.ibm.com/infocenter/systems/topic/
com.ibm.aix.basetechre f/doc/basetrf2/setuid.htm (accessed March 2008).

[14] Nerd Gurl, “Why Can’t I Ever Achieve My Goals?” Yahoo! Answers (Jan.
2008): http://answers.yahoo.com/question/index?qid=20080101143342AAQ1
jbO (accessed March 2008).

[15] D.M. Ritchie, Protection of Data File Contents, Patent No. 4135240 (July
1973): http://www.google.com/patents?vid=USPAT4135240 (accessed March
2008).

[16] J.H. Saltzer and M.D. Schroeder, “The Protection of Information in
Computer Systems, Proc. of the IEEE 63(9), 1278–1308 (Sept. 1975).

[17] C. Torek and C.H. Dik, Setuid mess (Sept. 1995): http://yarchive.net/
comp/setuid_mess.html (accessed March 2008).

[18] D. Tsafrir, D. Da Silva, and D. Wagner, “Change Process Identity”:
http://www.research.ibm.com/change-process-identity or
http://code.google.com/p/change-process-identity.

