
72	 ; LO G I N : VO L . 33, N O. 3

P e t e r B a e r G a lv i n

Pete’s all things
Sun (PATS): the
state of ZFS
Peter Baer Galvin (www.galvin.info) is the Chief
Technologist for Corporate Technologies, a premier
systems integrator and VAR (www.cptech.com). Be-
fore that, Peter was the systems manager for Brown
University’s Computer Science Department. He has
written articles and columns for many publications
and is coauthor of the Operating Systems Concepts
and Applied Operating Systems Concepts textbooks.
As a consultant and trainer, Peter teaches tutorials
and gives talks on security and system administra-
tion worldwide.

pbg@cptech.com

W e a r e i n t h e m i d s t o f a f i l e s y s -
tem revolution, and it is called ZFS. File sys-
tem revolutions do not happen very often,
so when they do, excitement ensues—
maybe not as much excitement as during a
political revolution, but file system revolu-
tions are certainly exciting for geeks. What
are the signs that we are in a revolution? By
my definition, a revolution starts when the
peasants (we sysadmins) are unhappy with
the status quo, some group comes up with
a better idea, and the idea spreads beyond
that group and takes on a life of its own. Of
course, in a successful revolution the new
idea actually takes hold and does improve
the peasant’s lot.

;login: has had two previous articles about ZFS.
The first, by Tom Haynes, provided an overview
of ZFS in the context of building a home file server
(;login:, vol. 31, no. 3). In the second, Dawidek and
McKusick (;login:, vol. 32, no. 3) discuss ZFS’s fun-
damental features, as well as the porting of ZFS to
FreeBSD. This month I won’t repeat those efforts,
but, rather, continue on from that ZFS coverage to
complete the list of ZFS features, discuss field ex-
periences and the ZFS adoption status, and try to
see into the future of ZFS. The revolution started in
November 2005 when ZFS was made available for
download. Now let’s check in with the revolution
and see how it is progressing.

The Current Feature List

This detailed summary of all of the current ZFS
features can serve as a checklist to determine
whether ZFS can do what is needed in a given en-
vironment. The following feature list is accurate as
of April 2008. All of the features are included in
the current commercial Solaris release (Update 4,
also known as 11/07).

n	 Disks or slices are allocated to storage “pools”
in RAID 0, 1, 0+1, 1+0, 5 (RAID Z), and 6
(RAID Z2) formats. (Note that RAID Z and Z2
are optimized over the standard RAID levels to
remove the RAID 5 “write hole.”)

n	 File systems live within a pool and grow
and shrink automatically within that pool as
needed.

n	 File systems can contain other file systems. (Think of ZFS file systems as
being more like directories, with many new attributes.)

n	 File system attributes include compressed, NFS exported, iSCSI export-
ed, owned by a container (a “dataset”), mount point, and user-definable.

n	 Copy-on-write allocation, data, and meta-data are always consistent on
disk; no “fsck” is needed.

n	 There is end-to-end data and meta-data integrity checking via a Merkel
tree structure; important blocks are automatically “dittoed,” giving data
protection far beyond other solutions.

n	 The system is “self-healing”: If corrupt data or meta-data is found and
a noncorrupt copy exists, the corrupt version is replaced with the good
version.

n	 Highly efficient snapshots and clones (read-write snapshots) can be
made.

n	 One can roll back a file system to a given snapshot and promote a clone
to replace its parent file system.

n	 There are quotas to limit the size of a file system and reservations to
guarantee space to a file system.

n	 One can make full and incremental backups and restores to a file or
between two systems (replication) via send and receive commands.

n	 There is support for multiple block sizes, pipelined I/O, dynamic strip-
ing, and intelligent prefetch for performance.

n	 Fast re-silvering (re-mirroring) is allowed.
n	 ACLs are in NFS V4/NTFS style.
n	 Adaptive “endian-ness” allows import and export of ZFS pools between

varying-architecture systems; new data writes are in the native format of
the current system.

n	 Requestable pool integrity checks (scrubs) to search for corruption in
the background can be made.

n	 Configuration data is stored with the data (e.g., disks know what RAID
set they were a part of).

n	 The system can make use of hot spares, shareable between pools, with
automatic RAID rebuild upon disk failure detection

n	 ZFS is implemented in two major commands (with lots of subcom-
mands).

n	 Very, very large data structures (up to 128 bits) are allowed, with no
arbitrary limits (files per directory, file systems, file size, disk per pool,
snapshots, clones, and so on).

n	 ZFS is open source and free.
n	 It has been ported to FreeBSD, FUSE, and Mac OS X Leopard (read-

only).

There are many articles about how to use ZFS and take advantage of these
features, which, again, I won’t repeat here [1].

ZFS Status

File system revolutions, as opposed to political revolutions, happen much
more slowly and tend to be bloodless (although losing files can be very pain-
ful). A file system gradually gains trust as direct and shared experiences
gradually build into an “it works” or “it loses files” general consensus. At this
point in the life of ZFS it has passed that test for many people. The testing
performed during its development and continuing every day is rather awe-
inspiring, as described in Bill Moore’s blog [2]. Reading through the posts
at the ZFS forum [3] suggests that ZFS is being used a lot and at many sites,
mostly very successfully. There is quite a lot of discussion of current and fu-
ture features, as well as a few “something bad happened” discussions. Those

; LO G I N : J U N E 20 0 8	Pete ’s A ll Th ing s Sun : Th e State of Z FS	 73

74	 ; LO G I N : VO L . 33, N O. 3

posts, while revealing occasional problems, show in summary that ZFS is
rock-solid, especially for such a new, innovative, core piece of software.

The next step in adopting new technology is support by other software prod-
ucts, such as backup/restore tools, clustering, and even general-purpose ap-
plications such as databases. Other vendors’ products might work fine, but
without a stamp of approval, commercial sites are very unlikely to use the
new file system and risk being off of the support matrix. At first, of course
there was zero non-Sun support for ZFS, but that situation has improved
greatly. All major backup products support ZFS, and it is also now sup-
ported by Veritas and Sun cluster. Most applications are independent of the
underlying file system, but those that do care, such as Oracle, are generally
supporting ZFS.

Before a new technology can be put into top-priority environments (such as
production OLTP database servers), it must perform as well as or better than
the technology it is replacing. Performance tuning is usually a never-ending
effort (or at least not ending until the product life ends). ZFS is no exception,
and it is exceptionally young compared to the other production file systems
such as UFS and Veritas Storage Foundation (the VXVM volume manager
and VXFS file system). The only performance question more controversial
than “Which is faster?” is “How do you prove which is faster?” The debate in
general is continuous and unsolvable. There are certainly claims that ZFS is
very fast, and faster than other file systems for certain operations. There are
also counter claims that ZFS is slower at other operations. The StorageMojo
blog has been following the debate and is a good site to watch. One posting
[4] is especially interesting, showing ZFS compared with hardware RAID.

In my opinion, ZFS is a fundamentally fast volume manager/file system. It
gets many aspects of storage very right. However, it cannot in software make
up for one feature of hardware RAID: NVRAM cache. Nonvolatile cache al-
lows writes to memory to take the temporary place of writes to disk. Be-
cause memory is much faster than disk, NVRAM is a great performance
win. So, for example, using a Sun server containing local disk as a NAS
device will have worse random write performance than a good NAS appli-
ance that contains NVRAM. One solution to this performance delta is to use
hardware RAID arrays that include NVRAM to provide individual LUNs to
a system, and then use ZFS to create RAID sets and manage those LUNs as
if they were individual disks. The NVRAM provides a performance boost,
while all of the ZFS features remain available. Of course, in cases where ran-
dom write performance is not critical (say, media servers and backup disk
pools) NVRAM is not needed and ZFS is fine using local disks.

Aside from these performance challenges, ZFS is doing well at many sites. It
is mostly being used in development, testing, and utility environments but is
making its way into production. As more improvements are made to the fea-
ture set and more field experience drives acceptance, ZFS use should greatly
increase.

The Future Feature List and the Future of ZFS

In spite of the massive list of ZFS features, there are still features that are de-
sirable but not yet included in ZFS.

Probably the most important and useful would be the use of ZFS as the root
file system, which would enable all of the above features for system admin-
istration. Imagine creating an instant snapshot of “/” and installing a patch
in “/” and rolling the system back to that snapshot if the patch did not have
the desired effect. Or imagine creating a snapshot every minute of the day

to allow easy detection of changed files and restoration to the file’s previ-
ous state. Once ZFS can be used as a root file system, zones will also be able
to use ZFS for their root file systems. (Actually they already can have a ZFS
root, but such a system cannot be upgraded to the next release of Solaris, as
the upgrade code does not understand ZFS.) Fortunately, bootable ZFS has
been added to OpenSolaris and should make its way into the commercial
Solaris release in the future. It can be used currently via the various non-
commercial Solaris distributions [5].

Native CIFS support is in OpenSolaris as well, so expect CIFS exporting as
a future feature—no Samba (or other dancing) required.

Encryption is complicated to implement for a file system, mostly because of
the key management. There is currently a ZFS encryption project underway
for OpenSolaris [6], and alpha test code has already been released.

Removing disks (aside from hot spares) from a pool is an obvious need.
Also missing is the ability to expand the size of a pool by adding individual
disks. Currently, a set of disks can be added, for example as a RAIDZ set
concatenated to a RAIDZ pool, and ZFS will cleverly stripe data across the
two RAIDZ sets to maximize performance. However, adding a single disk to
a ZFS pool simply has the disk concatenated to that pool, leaving for exam-
ple a RAIDZ-plus-a-concatenated-disk pool rather than the much more de-
sirable RAIDZ-expanded-to-include-the-new-disk pool.

The current quota system is a per-filesystem rather than a per-user one,
which has pros and cons. There do not seem to be any plans to implement
per-user quotas as well.

Scrubbing is currently done as a low-priority I/O task, but even lower-over-
head user-definable scrubbing rates (in which a pool is gradually scrubbed
over a period of time) are already planned for Solaris.

The ZFS intent log (ZIL), the place where ZFS stores changes that are to be
applied to a ZFS pool, currently resides within the disks of that pool. Open-
Solaris already includes the ability to put that log somewhere else, helping to
improve write and especially random write performance. A natural next step
would be to use a device dedicated to the ZIL. This could be an NVRAM de-
vice (and at least one company makes a PCI-based NVRAM card for Solaris)
or a flash-based device that has been optimized for writes.

Another performance improvement could come from Brendan Gregg (of
DTraceToolkit fame). He has added support in OpenSolaris for a level-2
adaptive replacement cache (L2ARC). This allows buffers to be evicted out of
DRAM into a storage medium that fits between DRAM and the disk in terms
of capacity and performance. The L2ARC and flash-based solid state drives
(SSDs) seem to be a natural fit, and this is certainly an area to watch over
the next 12 to 18 months.

ZFS integration with Mac OS X has been underway for quite a while, and
read/write ZFS is available for testing [7].

For performance, many database sites use direct I/O, which bypasses the
buffer cache and file locking, essentially telling the operating system and
file system to get out of the way of database I/O. This feature does not exist
within ZFS, and database performance on ZFS is currently a work in prog-
ress. For the latest information on ZFS performance see the ZFS Best Prac-
tices Guide [8].

Certainly the future is wide open for innovation around and integration of
ZFS. As one example, have a look at the Service Management Facility (SMF)

; LO G I N : J U N E 20 0 8	Pete ’s A ll Th ing s Sun : Th e State of Z FS	 75

76	 ; LO G I N : VO L . 33, N O. 3

services being written by Tim Foster to automate snapshots and backups of
ZFS file systems [9].

Next Time

Hopefully this ZFS status check has cleared up some questions and given
guidance as to whether ZFS is now or will be in the future the right file sys-
tem for your systems. The revolution seems to be well on its way and the
Bastille is starting to fall. ZFS rising in its place seems inevitable and desir-
able.

In the next PATS column I’ll discuss something that is basic, important, but
frequently overlooked or done ad hoc: system problem analysis. What steps
are the right ones to analyze a system that is having a problem, be it reliabil-
ity or performance? My hard-learned cookbook may be a useful addition to
your own techniques.

references

[1] Recommended articles about ZFS: http://opensolaris.org/os/community/
zfs/intro/; http://www.samag.com/documents/s=9950/sam0602j/0602j.htm;
http://www.samag.com/documents/s=9979/sam0603h/0603h.htm;
http://www.sun.com/bigadmin/features/articles/zfs_overview.jsp;
http://www.sun.com/bigadmin/features/articles/zfs_part1.scalable.jsp.

[2] Bill Moore’s ZFS blog: http://blogs.sun.com/bill/category/ZFS.

[3] ZFS Forum: http://www.opensolaris.org/jive/forum.jspa?forumID=80.

[4] StorageMojo blog entry comparing hardware RAID to ZFS performance:
http://storagemojo.com/?p=441.

[5] OpenSolaris downloads: http://opensolaris.org/os/downloads/.

[6] Alpha ZFS encryption support: http://www.opensolaris.org/os/project/
zfs-crypto/.

[7] ZFS for Mac OS X: http://trac.macosforge.org/projects/zfs/wiki/.

[8] Latest on ZFS performance: http://www.solarisinternals.com/wiki/
index.php/ZFS_Best_Practices_Guide.

[9] Automating snapshots: http://blogs.sun.com/timf/entry/zfs_automatic
_for_the_people.

