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D i d  y o u  h a p p e n  t o  s e e  t h e  l at e s t 
Die Hard movie? The one where the inter-
webs are broken? Well if you did, it prob-
ably annoyed you quite a bit. It’s a pretty 
typical Hollywood blockbuster take on 
computers and the nerds who love them, 
and they pretty typically get it all horribly 
wrong. I’m kind of atypical when it comes 
to these sorts of films: I actually rather like 
them. I think I find something endearing in 
Hollywood’s belief in magic [1]. But when 
I see them, I try to do so alone or in the com-
pany of nerds; otherwise someone I’m with 
will invariably ask, à la Homer Simpson [2], 
“Computers can do that?!” (or some varia-
tion thereof).

I imagine it’s the same pain periodically felt by pa-
leontologists who’ve been dragged to Jurassic Park, 
or um . . . pagans at Harry Potter? Anyway, I don’t 
like to disappoint folks, and since the answer to 
the Homer question is almost always, “Well, not 
really,” it’s better to just avoid the situation when 
I can. But much as I hate to harsh on their new-
found interest in computer security, I can’t help but 
chuckle to myself at how disappointed they’d be if 
they knew the truth about the security capabilities 
of today’s computers.

I’m not talking about Windows being vulnerable to 
the sploit of the week, or even theoretical design is-
sues such as mandatory access control. I’m talking 
about simple functionality that everyone outside 
of our community probably assumes is there and 
would be surprised to find out is not. For example, 
if you asked a random movie producer whether he 
or she thought a computer kept a record of all the 
changes made to any given file on the file system 
for the past week, I think you’d find that most of 
them would give an emphatic yes.

How many times was /etc/foobar changed, by 
whom, and when? This is a problem I think most 
people would assume has been solved by now. But 
in reality, this type of auditing information is sur-
prisingly difficult to come by. Indeed, very good 
books [3] have been written on the subject of teas-
ing this type of stuff from a file system offline and 
after an attack. To pull it off in real time you need 
to audit changes to every file in the file system. 
The audit records need to include who, what, and 
when, and they need to be captured and written in 
a way that is difficult to bypass or modify after the 
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fact. Add to that UNIX’s rather murky definition of a “file,” and this isn’t a 
solved problem. There are several solutions, and they’re all far from perfect.

So since that example ties in so well with the filesystem theme of this issue, 
I’d like to take a look at some ways to monitor changes to the file system, in-
cluding a method you may not have considered, namely using kernel instru-
mentation such as DTrace or SystemTap to audit kernel vfs read/write calls. 
I’ve become rather fond of the method lately for several reasons, and I hope 
it will prove useful to you.

By far the most popular way to do this sort of thing normally is with a file-
system integrity checker such as Tripwire [4] or Samhain [5]. These pro-
grams are polling engines; they usually run as a daemon and periodically 
wake up to recursively check the file system against a database of hashes. 
In practice this works fairly well. They have a reasonable overhead once the 
hash database is created, they capture changes to file metadata such as per-
missions, ownership, and modification dates, and they are pretty good at 
staying out of the way.

I’ve used Samhain in my production environments for a few years now, and 
I don’t hate it. It has some rudimentary rootkit detection capabilities on 
Linux and Open/Free BSD via the /dev/kmem file, can hide itself from script 
kiddies, and does a good job of finding and notifying you of changes to the 
file system. Although it wants badly for you to use its client/server model, it 
will play nicely with your existing tools such as syslog, Splunk, databases, 
and SEC/Logsurfer, if you ask it politely.

The biggest thing I don’t like about the filesystem integrity checkers has 
got to be that they can’t tell you who changed the file. Ideally I’d like to 
know the pid and uid of the thingy that changed a given file. Since integ-
rity checkers simply wake up once every so often and compare files against 
MD5 hashes in a database, they only know that a file has changed and not 
who changed it. The question of “who” is what you might call a fundamental 
piece of information.

A less important nit is that the change notifications are delayed by the 
length of the polling interval. Depending on your situation, it could take 
some time before you know what files have changed, which can be frustrat-
ing when you’re dealing with an intrusion in real time. The integrity check-
ers can obviously only notify you of changes to “normal” files; changes to 
special files such as sockets and block devices cannot be detected this way. 
Finally, the integrity checkers are somewhat high in the stack, so it’s pos-
sible that they could be bypassed for certain types of events. For example, 
they won’t be able to notify you of read events if you have “noatime” set in 
fstab (because they won’t be able to see a difference in access times in the 
file metadata).

One way to solve some of these problems, including the polling interval 
delay, is to use the kernel’s inotify subsystem. The inotify subsystem pro-
vides user-space programs with notifications of file change events. It’s used 
primarily by content-indexing tools such as Beagle [6], but there’s no reason 
it couldn’t be used to log changes to files systemwide. There are several user-
space implementations, including some shell tools called “inotifytools” [7]. 
These include a program called “inotifywait” that basically blocks on inotify 
events for a given directory or set of directories and provides event details to 
STDOUT. I haven’t used inotifytools to recursively monitor /, so I don’t know 
how much overhead it might incur, but from my limited experience it seems 
pretty scalable. It’s also a bit closer to the kernel, so it’s more difficult to fool. 
Unfortunately inotify doesn’t solve the “who” problem. The pid/uid of the 



changing process is not one of the pieces of information passed by the ker-
nel to user space. Bummer.

A somewhat more indirect approach might be to use tty snooping. Solu-
tions of this type simply listen in on input from the ttys of the machine, 
thereby logging the actions of users. There are all sorts of implementations 
here; most of them are shell replacements or patches to existing shells such 
as bofh-bash and ttysnoop [8], but some are more elegant, kernel-space tools 
such as Sebek [9]. These tty sniffers work very nicely when a user can’t sim-
ply launch another shell to bypass them. They solve the “who” problem, giv-
ing you granular detail of what changed and sometimes even the content of 
the change, depending on how the file was edited. These can induce some 
overhead, however, and, since they tend to be user-centric, they might be 
bypassed by non-interactive programs or system processes.

Finally, just about every system has a kernel-space auditing subsystem: SE-
Linux and the kernel audit subsystem for Linux, BSM auditing for Solaris et 
al. These are used to great effect by folks who know them well, and they are 
probably the closest thing to the “right” answer, but they aren’t necessarily 
focused on file accesses and can generate metric tons of auditing informa-
tion. They can also be difficult to use and maintain and rarely play nicely 
with centralized tools such as OSSIM or Syslog.

So let’s take a look at the kernel probes approach I’ve been playing with 
lately. I should disclaim that the DTrace folks have explicitly warned against 
the use of DTrace for security auditing [10] because DTrace might drop 
events if the system becomes overloaded. This is pretty much a deal breaker 
for DTrace in this context at the moment, but I have a feeling DTrace will 
eventually be a useful solution here. So for now I’ll focus on the SystemTap 
script in Figure 1.

If you aren’t familiar with SystemTap [11], it is comparable to DTrace but 
only runs on Linux. There are already healthy religions built up around 
both tools, and I’ll probably get flamed for that last sentence, so I’ll leave it 
at that and let you work out the differences for yourself. SystemTap scripts 
are written in an awk-like language, parsed into C by an interpreter, com-
piled into a kernel module, and finally loaded into a running kernel. Once 
loaded, the module can trace system calls and broker information between 
kernel and user space. It’s a fascinating and useful tool, but it requires some 
understanding of the kernel internals, or at least a good handle on C and a 
willingness to dig around at the kernel headers to use.

SystemTap requires that CONFIG_DEBUG_INFO, CONFIG_KPROBES, 
and optionally CONFIG_RELAY and CONFIG_DEBUG_FS be enabled in 
the kernel. It also assumes some Red Hat–style symlinks to the running ker-
nel source, so check the README if you’re installing it on a box that’s not 
Red Hat. One of the more interesting features of SystemTap is the ability to 
inject blocks of C directly into the system tap script. In the script in Figure 
1, I have a function that is written in raw C, but it is called from within the 
SystemTap scripting language.

The purpose of the script is to probe kernel vfs_read and vfs_write calls 
and return information about them to STDOUT. This approach has several 
advantages. First, it takes advantage of the fact that everything in UNIX is 
a file, so reads and writes to sockets, fifos, block files, etc., will all be cap-
tured. Second, since we are writing the instrumentation, we can ask for 
whatever pieces of information we want, including the pid/uid of the entity 
making the file access. Next, the probe is fairly limited in scope, so we get 
what we want and nothing we don’t, and with a very small overhead. Fi-
nally, it plays nicely with any of your other tools that take STDIN. The thing 
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I might like the most about it is that it’s actually kind of fun. It isn’t every 
day I get to rummage about in /usr/src/linux/include, and I learned a lot 
about Linux in the process.

#from an error message I got when I misspelled a struct name,
#the structs avail to stap in the vfs_(read|write) context are:
#f_u f_dentry f_vfsmnt f_op f_count f_flags f_mode f_pos f_owner
#f_uid f_gid f_ra f_version f_security private_data f_ep_links f_ep_lock f_mapping

function get_path:string (da:long, va:long) %{
	 char *page = (char *)__get_free_page(GFP_ATOMIC);
	 struct dentry *dentry = (struct dentry *)((long)THIS->da);
	 struct vfsmount *vfsmnt = (struct vfsmount *)((long)THIS->va);
	 snprintf(THIS->__retvalue, MAXSTRINGLEN, “%s”, d_path(dentry, vfsmnt,\ 
 		  page, PAGE_SIZE));
	 free_page((unsigned long)page);
%}

probe	 kernel.function (“vfs_write”),
		  kernel.function (“vfs_read”)
{
	 dev_nr = $file->f_dentry->d_inode->i_sb->s_dev
	 path=get_path($file->f_dentry, $file->f_vfsmnt)

	 subPath=substr(path,0,4)
	 if((subPath != “/dev”) && (dev_nr == (8 << 20 | 3)))
	 printf (“%s(%d,%d) %s\n”, execname(), pid(), uid(), path )
}

F i g u r e  1 :  S a m pl  e  S y s t e m T a p  s c r i p t

So let’s step through this script starting with the function declaration in line 
1:

function get_path:string (da:long, va:long) %{

As you can see, the function declaration is not C. The function is declared 
in the SystemTap language; embedded C blocks are denoted by %{ and %}. 
The second thing you might notice is that both variables are declared long 
even though, when the function is called below, it is passed pointers to 
structs. This is because all pointers are cast to longs by the interpreter, so 
they need to be declared as such in the function declaration and typedef ’d 
back into struct pointers later. The entire purpose of this function is to call 
the d_path( ) function to return the full path of the file in question. So the 
next three lines set up the required arguments for dpath( ):

char *page = (char *)__get_free_page(GFP_ATOMIC);
struct dentry *dentry = (struct dentry *)((long)THIS->da);
struct vfsmount *vfsmnt = (struct vfsmount *)((long)THIS->va);

There may have been a way to directly refer to the file’s path with SystemTap 
built-ins, but if there is, I couldn’t find it. The next two lines call dpath( ) 
and free the page we allocated:

snprintf(THIS->__retvalue, MAXSTRINGLEN, “%s”, d_path(dentry, vfsmnt, \
	 page, PAGE_SIZE));
free_page((unsigned long)page);

 Below this function is the SystemTap script proper. The first two lines tell 
SystemTap that we are going to probe for vfs_ (write|read) calls:

probe	 kernel.function (“vfs_write”),
			   kernel.function (“vfs_read”)



Any number of comma-separated probes may be declared in a probe state-
ment. The block immediately following the probe statement includes the in-
structions we want to carry out for each call we capture. In this script the 
first thing we do is dereference the device number of the current file:

dev_nr = $file->f_dentry->d_inode->i_sb->s_dev

The dentry struct is defined in /usr/src/linux/include/linux/dcache.h. You 
can directly reference anything in a struct from SystemTap without needing 
to resort to embedded C. It’s generally preferable to avoid C when you can, 
because SystemTap uses kprobes’ considerable safety and sanity checks as 
long as you stay within the bounds of its interpreted language. I should also 
save you some time and note that when you are dereferencing string data 
from kernel space in the SystemTap language, you need to use the kernel_
string ( ) conversion function or you’ll end up with a typedef’d long once 
again. For example, we could directly dereference the name of the file from 
within the SystemTap language like so:

f_name=kernel_string($file->f_dentry->d_name->name)

Next we call our get_path function to derive the full path of the file:

path=get_path($file->f_dentry, $file->f_vfsmnt)

I placed some filters in here to give you a rough feel for the syntax you can 
use to filter probe data. Generally, the SystemTap language has all the itera-
tive loops and conditionals you’d expect. In the line:

subPath=substr(path,0,4) if((subPath != “/dev”) && (dev_nr == (8 << 20 | 3)))

the first check filters out changes to files in the /dev directory (grep -v ‘^/
dev’). The second check filters out everything except files that reside on 
the third SCSI volume (/dev/sda3) as defined by the device number (major 
8, minor 3). You can derive the device number for files on a given partition 
by cd ’ing to that partition and performing a stat -c ‘%D’ *. Without any 
filters you get every read and write happening on the system. If someone 
moved a mouse, for example, you’d see writes to /dev/psaux.

Finally, the printf built in prints our data to STDOUT: 

printf (“%s(%d,%d) %s\n”, execname(), pid(), uid(), path )

The first three arguments are also built-in functions: execname returns 
the name of the program making the change (xterm, vi, etc.), and pid ( ) and 
uid ( ) are self-explanatory. I placed the reads and writes in the same probe 
statement to show you it’s possible, but if we wanted to differentiate reads 
from writes, our script could declare the probes separately, giving each its 
own instruction block. The read instruction block, for example, could have a 
printf that said read: %s(%d,%d) %s\ n. We execute the script like so:

sudo stap -g figure1.stp

or, even better:

sudo stap -g figure1.stp | logger -t vfsprobe -p kern.info &

The -g is for “guru” mode, which allows the execution of embedded C. As 
I alluded to earlier, guru mode gives you the rope to hang yourself with by 
turning off quite a bit of sanity checking. This sort of thing should probably 
not be done lightly. If you are new to SystemTap and are considering run-
ning your code on production systems, I’d recommend running it by the 
gang on the SystemTap mailing list (as I did with this script).

I think kernel probe tools show a lot of potential to solve some of our nag-
ging auditing needs. I’ve begun running a script like this one under dae-
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montools [12] on a few of the boxes in our staging environment, with 
favorable results. I’m hoping it will eventually replace a few auditing tools 
we’re using now, and I’d really like to expand it to include some other audit-
ing gaps I have. It’s not Blockbuster material, probably, but it is close enough 
to magic for the folks I hang out with.

Take it easy.
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