
DAVID J OSEPHSEN

iVoyeur: Admin,
root thyself.
David Josephsen is the author of Building a Monitor-
ing Infrastructure with Nagios (Prentice Hall PTR,
2007) and Senior Systems Engineer at DBG, Inc.,
where he maintains a gaggle of geographically
dispersed server farms. He won LISA ‘04’s Best Paper
award for his co-authored work on spam mitigation,
and he donates his spare time to the SourceMage
GNU Linux Project.

dave-usenix@skeptech.org

D i d y o u h a p p e n t o s e e t h e l at e s t
Die Hard movie? The one where the inter-
webs are broken? Well if you did, it prob-
ably annoyed you quite a bit. It’s a pretty
typical Hollywood blockbuster take on
computers and the nerds who love them,
and they pretty typically get it all horribly
wrong. I’m kind of atypical when it comes
to these sorts of films: I actually rather like
them. I think I find something endearing in
Hollywood’s belief in magic [1]. But when
I see them, I try to do so alone or in the com-
pany of nerds; otherwise someone I’m with
will invariably ask, à la Homer Simpson [2],
“Computers can do that?!” (or some varia-
tion thereof).

I imagine it’s the same pain periodically felt by pa-
leontologists who’ve been dragged to Jurassic Park,
or um . . . pagans at Harry Potter? Anyway, I don’t
like to disappoint folks, and since the answer to
the Homer question is almost always, “Well, not
really,” it’s better to just avoid the situation when
I can. But much as I hate to harsh on their new-
found interest in computer security, I can’t help but
chuckle to myself at how disappointed they’d be if
they knew the truth about the security capabilities
of today’s computers.

I’m not talking about Windows being vulnerable to
the sploit of the week, or even theoretical design is-
sues such as mandatory access control. I’m talking
about simple functionality that everyone outside
of our community probably assumes is there and
would be surprised to find out is not. For example,
if you asked a random movie producer whether he
or she thought a computer kept a record of all the
changes made to any given file on the file system
for the past week, I think you’d find that most of
them would give an emphatic yes.

How many times was /etc/foobar changed, by
whom, and when? This is a problem I think most
people would assume has been solved by now. But
in reality, this type of auditing information is sur-
prisingly difficult to come by. Indeed, very good
books [3] have been written on the subject of teas-
ing this type of stuff from a file system offline and
after an attack. To pull it off in real time you need
to audit changes to every file in the file system.
The audit records need to include who, what, and
when, and they need to be captured and written in
a way that is difficult to bypass or modify after the

; LO G I N : J U N E 20 0 8	iVoyeur : A dm in , Root Th yself	 77

78	 ; LO G I N : VO L . 33, N O. 3

fact. Add to that UNIX’s rather murky definition of a “file,” and this isn’t a
solved problem. There are several solutions, and they’re all far from perfect.

So since that example ties in so well with the filesystem theme of this issue,
I’d like to take a look at some ways to monitor changes to the file system, in-
cluding a method you may not have considered, namely using kernel instru-
mentation such as DTrace or SystemTap to audit kernel vfs read/write calls.
I’ve become rather fond of the method lately for several reasons, and I hope
it will prove useful to you.

By far the most popular way to do this sort of thing normally is with a file-
system integrity checker such as Tripwire [4] or Samhain [5]. These pro-
grams are polling engines; they usually run as a daemon and periodically
wake up to recursively check the file system against a database of hashes.
In practice this works fairly well. They have a reasonable overhead once the
hash database is created, they capture changes to file metadata such as per-
missions, ownership, and modification dates, and they are pretty good at
staying out of the way.

I’ve used Samhain in my production environments for a few years now, and
I don’t hate it. It has some rudimentary rootkit detection capabilities on
Linux and Open/Free BSD via the /dev/kmem file, can hide itself from script
kiddies, and does a good job of finding and notifying you of changes to the
file system. Although it wants badly for you to use its client/server model, it
will play nicely with your existing tools such as syslog, Splunk, databases,
and SEC/Logsurfer, if you ask it politely.

The biggest thing I don’t like about the filesystem integrity checkers has
got to be that they can’t tell you who changed the file. Ideally I’d like to
know the pid and uid of the thingy that changed a given file. Since integ-
rity checkers simply wake up once every so often and compare files against
MD5 hashes in a database, they only know that a file has changed and not
who changed it. The question of “who” is what you might call a fundamental
piece of information.

A less important nit is that the change notifications are delayed by the
length of the polling interval. Depending on your situation, it could take
some time before you know what files have changed, which can be frustrat-
ing when you’re dealing with an intrusion in real time. The integrity check-
ers can obviously only notify you of changes to “normal” files; changes to
special files such as sockets and block devices cannot be detected this way.
Finally, the integrity checkers are somewhat high in the stack, so it’s pos-
sible that they could be bypassed for certain types of events. For example,
they won’t be able to notify you of read events if you have “noatime” set in
fstab (because they won’t be able to see a difference in access times in the
file metadata).

One way to solve some of these problems, including the polling interval
delay, is to use the kernel’s inotify subsystem. The inotify subsystem pro-
vides user-space programs with notifications of file change events. It’s used
primarily by content-indexing tools such as Beagle [6], but there’s no reason
it couldn’t be used to log changes to files systemwide. There are several user-
space implementations, including some shell tools called “inotifytools” [7].
These include a program called “inotifywait” that basically blocks on inotify
events for a given directory or set of directories and provides event details to
STDOUT. I haven’t used inotifytools to recursively monitor /, so I don’t know
how much overhead it might incur, but from my limited experience it seems
pretty scalable. It’s also a bit closer to the kernel, so it’s more difficult to fool.
Unfortunately inotify doesn’t solve the “who” problem. The pid/uid of the

changing process is not one of the pieces of information passed by the ker-
nel to user space. Bummer.

A somewhat more indirect approach might be to use tty snooping. Solu-
tions of this type simply listen in on input from the ttys of the machine,
thereby logging the actions of users. There are all sorts of implementations
here; most of them are shell replacements or patches to existing shells such
as bofh-bash and ttysnoop [8], but some are more elegant, kernel-space tools
such as Sebek [9]. These tty sniffers work very nicely when a user can’t sim-
ply launch another shell to bypass them. They solve the “who” problem, giv-
ing you granular detail of what changed and sometimes even the content of
the change, depending on how the file was edited. These can induce some
overhead, however, and, since they tend to be user-centric, they might be
bypassed by non-interactive programs or system processes.

Finally, just about every system has a kernel-space auditing subsystem: SE-
Linux and the kernel audit subsystem for Linux, BSM auditing for Solaris et
al. These are used to great effect by folks who know them well, and they are
probably the closest thing to the “right” answer, but they aren’t necessarily
focused on file accesses and can generate metric tons of auditing informa-
tion. They can also be difficult to use and maintain and rarely play nicely
with centralized tools such as OSSIM or Syslog.

So let’s take a look at the kernel probes approach I’ve been playing with
lately. I should disclaim that the DTrace folks have explicitly warned against
the use of DTrace for security auditing [10] because DTrace might drop
events if the system becomes overloaded. This is pretty much a deal breaker
for DTrace in this context at the moment, but I have a feeling DTrace will
eventually be a useful solution here. So for now I’ll focus on the SystemTap
script in Figure 1.

If you aren’t familiar with SystemTap [11], it is comparable to DTrace but
only runs on Linux. There are already healthy religions built up around
both tools, and I’ll probably get flamed for that last sentence, so I’ll leave it
at that and let you work out the differences for yourself. SystemTap scripts
are written in an awk-like language, parsed into C by an interpreter, com-
piled into a kernel module, and finally loaded into a running kernel. Once
loaded, the module can trace system calls and broker information between
kernel and user space. It’s a fascinating and useful tool, but it requires some
understanding of the kernel internals, or at least a good handle on C and a
willingness to dig around at the kernel headers to use.

SystemTap requires that CONFIG_DEBUG_INFO, CONFIG_KPROBES,
and optionally CONFIG_RELAY and CONFIG_DEBUG_FS be enabled in
the kernel. It also assumes some Red Hat–style symlinks to the running ker-
nel source, so check the README if you’re installing it on a box that’s not
Red Hat. One of the more interesting features of SystemTap is the ability to
inject blocks of C directly into the system tap script. In the script in Figure
1, I have a function that is written in raw C, but it is called from within the
SystemTap scripting language.

The purpose of the script is to probe kernel vfs_read and vfs_write calls
and return information about them to STDOUT. This approach has several
advantages. First, it takes advantage of the fact that everything in UNIX is
a file, so reads and writes to sockets, fifos, block files, etc., will all be cap-
tured. Second, since we are writing the instrumentation, we can ask for
whatever pieces of information we want, including the pid/uid of the entity
making the file access. Next, the probe is fairly limited in scope, so we get
what we want and nothing we don’t, and with a very small overhead. Fi-
nally, it plays nicely with any of your other tools that take STDIN. The thing

; LO G I N : J U N E 20 0 8	iVoyeur : A dm in , Root Th yself	 79

80	 ; LO G I N : VO L . 33, N O. 3

I might like the most about it is that it’s actually kind of fun. It isn’t every
day I get to rummage about in /usr/src/linux/include, and I learned a lot
about Linux in the process.

#from an error message I got when I misspelled a struct name,
#the structs avail to stap in the vfs_(read|write) context are:
#f_u f_dentry f_vfsmnt f_op f_count f_flags f_mode f_pos f_owner
#f_uid f_gid f_ra f_version f_security private_data f_ep_links f_ep_lock f_mapping

function get_path:string (da:long, va:long) %{
	 char *page = (char *)__get_free_page(GFP_ATOMIC);
	 struct dentry *dentry = (struct dentry *)((long)THIS->da);
	 struct vfsmount *vfsmnt = (struct vfsmount *)((long)THIS->va);
	 snprintf(THIS->__retvalue, MAXSTRINGLEN, “%s”, d_path(dentry, vfsmnt,\
 		 page, PAGE_SIZE));
	 free_page((unsigned long)page);
%}

probe	 kernel.function (“vfs_write”),
		 kernel.function (“vfs_read”)
{
	 dev_nr = $file->f_dentry->d_inode->i_sb->s_dev
	 path=get_path($file->f_dentry, $file->f_vfsmnt)

	 subPath=substr(path,0,4)
	 if((subPath != “/dev”) && (dev_nr == (8 << 20 | 3)))
	 printf (“%s(%d,%d) %s\n”, execname(), pid(), uid(), path)
}

F i g u r e 1 : S a m pl e S y s t e m T a p s c r i p t

So let’s step through this script starting with the function declaration in line
1:

function get_path:string (da:long, va:long) %{

As you can see, the function declaration is not C. The function is declared
in the SystemTap language; embedded C blocks are denoted by %{ and %}.
The second thing you might notice is that both variables are declared long
even though, when the function is called below, it is passed pointers to
structs. This is because all pointers are cast to longs by the interpreter, so
they need to be declared as such in the function declaration and typedef ’d
back into struct pointers later. The entire purpose of this function is to call
the d_path() function to return the full path of the file in question. So the
next three lines set up the required arguments for dpath():

char *page = (char *)__get_free_page(GFP_ATOMIC);
struct dentry *dentry = (struct dentry *)((long)THIS->da);
struct vfsmount *vfsmnt = (struct vfsmount *)((long)THIS->va);

There may have been a way to directly refer to the file’s path with SystemTap
built-ins, but if there is, I couldn’t find it. The next two lines call dpath()
and free the page we allocated:

snprintf(THIS->__retvalue, MAXSTRINGLEN, “%s”, d_path(dentry, vfsmnt, \
	 page, PAGE_SIZE));
free_page((unsigned long)page);

 Below this function is the SystemTap script proper. The first two lines tell
SystemTap that we are going to probe for vfs_ (write|read) calls:

probe	 kernel.function (“vfs_write”),
			 kernel.function (“vfs_read”)

Any number of comma-separated probes may be declared in a probe state-
ment. The block immediately following the probe statement includes the in-
structions we want to carry out for each call we capture. In this script the
first thing we do is dereference the device number of the current file:

dev_nr = $file->f_dentry->d_inode->i_sb->s_dev

The dentry struct is defined in /usr/src/linux/include/linux/dcache.h. You
can directly reference anything in a struct from SystemTap without needing
to resort to embedded C. It’s generally preferable to avoid C when you can,
because SystemTap uses kprobes’ considerable safety and sanity checks as
long as you stay within the bounds of its interpreted language. I should also
save you some time and note that when you are dereferencing string data
from kernel space in the SystemTap language, you need to use the kernel_
string () conversion function or you’ll end up with a typedef’d long once
again. For example, we could directly dereference the name of the file from
within the SystemTap language like so:

f_name=kernel_string($file->f_dentry->d_name->name)

Next we call our get_path function to derive the full path of the file:

path=get_path($file->f_dentry, $file->f_vfsmnt)

I placed some filters in here to give you a rough feel for the syntax you can
use to filter probe data. Generally, the SystemTap language has all the itera-
tive loops and conditionals you’d expect. In the line:

subPath=substr(path,0,4) if((subPath != “/dev”) && (dev_nr == (8 << 20 | 3)))

the first check filters out changes to files in the /dev directory (grep -v ‘^/
dev’). The second check filters out everything except files that reside on
the third SCSI volume (/dev/sda3) as defined by the device number (major
8, minor 3). You can derive the device number for files on a given partition
by cd ’ing to that partition and performing a stat -c ‘%D’ *. Without any
filters you get every read and write happening on the system. If someone
moved a mouse, for example, you’d see writes to /dev/psaux.

Finally, the printf built in prints our data to STDOUT:

printf (“%s(%d,%d) %s\n”, execname(), pid(), uid(), path)

The first three arguments are also built-in functions: execname returns
the name of the program making the change (xterm, vi, etc.), and pid () and
uid () are self-explanatory. I placed the reads and writes in the same probe
statement to show you it’s possible, but if we wanted to differentiate reads
from writes, our script could declare the probes separately, giving each its
own instruction block. The read instruction block, for example, could have a
printf that said read: %s(%d,%d) %s\ n. We execute the script like so:

sudo stap -g figure1.stp

or, even better:

sudo stap -g figure1.stp | logger -t vfsprobe -p kern.info &

The -g is for “guru” mode, which allows the execution of embedded C. As
I alluded to earlier, guru mode gives you the rope to hang yourself with by
turning off quite a bit of sanity checking. This sort of thing should probably
not be done lightly. If you are new to SystemTap and are considering run-
ning your code on production systems, I’d recommend running it by the
gang on the SystemTap mailing list (as I did with this script).

I think kernel probe tools show a lot of potential to solve some of our nag-
ging auditing needs. I’ve begun running a script like this one under dae-

; LO G I N : J U N E 20 0 8	iVoyeur : A dm in , Root Th yself	 81

82	 ; LO G I N : VO L . 33, N O. 3

montools [12] on a few of the boxes in our staging environment, with
favorable results. I’m hoping it will eventually replace a few auditing tools
we’re using now, and I’d really like to expand it to include some other audit-
ing gaps I have. It’s not Blockbuster material, probably, but it is close enough
to magic for the folks I hang out with.

Take it easy.

references

[1] The “magic” entry in the jargon file: http://catb.org/~esr/jargon/html/M/
magic.html.

[2] Homer Simpson’s classic quotation: http://www.eventsounds.com/wav/
cmputers.wav.

[3] Forensic Discovery by Dan Farmer and Wietse Venema: http://www
.porcupine.org/forensics/forensic-discovery/.

[4] Tripwire: http://www.tripwire.com/.

[5] Samhain: http://la-samhna.de/samhain.

[6] Beagle: http://beagle-project.org/Main_Page/.

[7] See libinotifytools for a scriptable inotify implementation:

http://inotify-tools.sourceforge.net/api/index.html.

[8] ttysnoop: http://freshmeat.net/projects/ttysnoop/.

[9] Sebek: http://www.honeynet.org/tools/sebek/.

[10] DTrace: http://www.solarisinternals.com/wiki/index.php
/DTrace_Topics_Limitations.

[11] SystemTap: http://sourceware.org/systemtap/.

[12] daemontools: http://cr.yp.to/daemontools.html.

