
; LO G I N : F E B R UA RY 2 0 0 8 C E NTR A L I Z E D PAC K AG E M A N AG E M E NT U S I N G STO R K 25

J U S T I N S A M U E L , J E R E M Y P L I C H T A ,
A N D J U S T I N C A P P O S

centralized package
management
using Stork
Justin Samuel is an undergraduate student at the
University of Arizona with an interest in security. In
addition to research, he teaches a secure Web appli-
cation development course.

jsamuel@cs.arizona.edu

Jeremy Plichta is a senior majoring in computer sci-
ence at the University of Arizona. He plans on pursu-
ing a career as a software engineer after graduating.

jplichta@cs.arizona.edu

Justin Cappos is a Ph.D. student at the University of
Arizona. His research interests revolve around build-
ing large distributed systems.

justin@cs.arizona.edu

M A N A G I N G T H E S O F T W A R E I N S TA L L E D
on multiple systems can be one of the duller
aspects of system administration. One has
to deal with varied sets of packages, each
replicated on numerous machines, and
bring up new systems, with the complica-
tion of those that are almost like the others,
but not quite. In many cases, great amounts
of time could be saved and more than a few
mistakes avoided by using tools specifically
created to make this job easier.

A Better Way

Picture an admin sitting down to upgrade a certain
package on 40 boxes, install new software on 100
others, and remove an unused package from every
box on the network. Rather than undergo hours of
tedium, the admin starts up her Stork management
tool and five minutes later she’s done. She knows
that her systems are hard at work applying the
changes she’s specified. What about the systems
that are currently offline? No problem. They’ll ap-
ply the changes the next time they come online.
And newly purchased systems? They’ll be automat-
ically updated to have the correct configuration.

Stork is the name for a collection of package man-
agement tools. Among the features it provides are:

� Central management of packages that should
be installed on a distributed set of computers.

� The ability to organize systems into logical
groups for ease of management.

� Increased speed and reliability of file transfers
by utilizing a variety of efficient and redun-
dant protocols.

� Secure architecture utilizing public-key
cryptography for digital signatures.

� Low-upkeep repository not requiring a central
repository administrator.

� Space, network bandwidth, and CPU savings
in some virtual machine environments.

� Fast and efficient update awareness through
the use of a publish/subscribe system for up-
date notification.

In this article we’ll focus on how to use the Stork
tools for centralized management.

How Stork Works

There are three fundamental components of the
Stork architecture:



� Client tools: These are package dependency resolution tools similar to
yum and apt. In addition to dependency resolution, they also follow
instructions from signed configuration files.

� Management tools: The management tools are the utilities administra-
tors use to create the signed configuration files that act as the instruc-
tions to the client tools. The management tools are generally used by
an administrator on his or her own computer.

� Repository: A repository is a Web server where configuration files cre-
ated by the management tools are stored so that the client tools can ac-
cess them.

Administrators can use one of the management tools to specify which pack-
ages should be installed on a node. The management tools create the neces-
sary configuration files, digitally sign them with the user’s private key, and
can even upload them to a repository.

The client tools, running on each machine, determine which packages to in-
stall, upgrade, or remove based upon the contents of the configuration files
the administrator created. If the actions require downloading package files
from the repository, the client tools also verify that the package files to be in-
stalled are themselves trusted according to the configuration files.

Currently, the client and management tools run on UNIX-like operating sys-
tems, with active usage including Fedora, Gentoo, and Arch Linux. The
package formats supported at this time are RPMs and tarballs, with deb file
support in development. The client tools can wrap around any existing
package management utilities that are installed on a system, so support can
be added for any other package formats a user may desire.

Signatures and Trust

By having the client tools ensure that every configuration file downloaded
from the repository is signed by a trusted administrator, the client tools can
be certain that no configuration files have been tampered with. This allows
unrelated organizations to safely share the use of a single repository: The
client tools do not trust files because they are signed by a repository key, but
rather because they are signed by an actual administrator’s key.

As verifying a digital signature requires knowing in advance the public keys
whose signatures should be trusted, this begs the question: How do the
client tools know which public keys those are? There are two main ap-
proaches to making sure the client tools know which administrator keys to
trust. These are not mutually exclusive.

The first approach is for an administrator to directly configure the client
tools to trust specific keys. For example, trusted keys can be configured at
the time the client tools are installed on each system. After that initial setup,
new keys can be securely distributed via packages installed using Stork, for
example.

The other approach that can be used is to integrate the client tools with an
existing method an organization has to distribute or to answer queries for
such keys. For example, PlanetLab [1] makes available the ability for a sys-
tem to fetch the keys that belong to that system’s administrators. Since a
module in the client tools makes use of this secure PlanetLab API that pro-
vides access to these keys, the client tools can be used on PlanetLab without
the need to manually distribute trusted keys to each system.

The client tools can be used in environments with multiple administrators.
To accommodate this, the client tools will ensure that, for any given config-

26 ; L O G I N : V O L . 3 3 , N O . 1



uration file, they are using the most recent version of the file in the reposito-
ry that has a valid signature of a trusted administrator. Thus, when another
administrator uploads a new version of the file in which the groups are de-
fined, the client tools will use the newer one.

Organizing Systems into Groups

An important optimization for managing systems is a group. A group is sim-
ply a logical association of multiple systems defined by the administrator of
those systems. The fact that groups are purely a logical organization is very
important: The systems in a group do not need to be connected in any way
and a single system can be a member of multiple groups. Groups exist for
the sole purpose of simplifying the job of the administrator, who may want
multiple systems to have some of the same packages installed.

Stork has three types of groups: simple, composite, and query result.

Simple groups allow users to manage a collection of systems as if they were a
single system. One can declare that machines 1, 2, and 3 are part of group G
and can then simply say that package X should be installed on group G. This
would result in each of machines 1, 2, and 3 installing package X. There is
no limit to how many systems can be in a group.

Composite groups are created by performing an operation on existing
groups. The supported operations for combined groups are UNION, INTER-
SECT, COMPLEMENT, and DIFFERENCE. Composite groups do not have
systems directly added. Instead, the systems in the group are chosen by the
operation and the membership of the other groups. For example, combined
group H may be defined as the UNION of group I and group J and will con-
tain all of the systems appearing in either group I or group J. Groups I and J
can be any types of groups, including composite groups.

Query result groups are computed based on some property of the network.
PlanetLab is a major user base of Stork and therefore the management tools
provide support for building groups from the result of CoMon [2] queries.
For example, a group to refer to all nodes with more than 1 GB of free disk
space could be created using the CoMon query select=’gbfree > 1’. Queries
are evaluated at the time of group creation. Administrators who wish to have
query result groups that automatically update can reevaluate the query re-
sult groups periodically via a cron job.

Management Tools

There are two main management tools for administering systems that are
running the client tools: a graphical tool (a.k.a. the GUI) and a command-
line tool called storkutil. These tools make it easy for administrators to cre-
ate the signed configuration files that need to be uploaded to the repository.
Both tools are cross-platform and require that python and openssl be in-
stalled. Let’s first take a look at using the GUI to manage systems.

The information that the GUI asks for when it is first started is a username
and password that will be used to authenticate with the repository, as well as
the location of a private key (with optional password). The private key is
used to sign configuration files. The corresponding public key is what the
client tools will use to verify that the signatures on downloaded configura-
tion files are legitimate.

After the GUI verifies the repository login information and validity of the
private key, the user can begin configuring the groups and desired package

; LO G I N : F E B R UA RY 2 0 0 8 C E NTR A L I Z E D PAC K AG E M A N AG E M E NT U S I N G STO R K 27



installation actions. The GUI retrieves the latest configuration files from the
repository and displays any groups and package installation actions that
were previously defined. To add a new group, click on the “add group” but-
ton and give the group a name. Next, proceed to either add nodes to form a
simple group, make this a combined group by defining it as a union or inter-
section of other groups, or make it a dynamic group by setting a network
property such as a CoMon query.

After the new group is created, it important to define package management
actions for the group. That is, define packages that should be installed, up-
graded, or removed for all of the nodes of the group. To install or upgrade
a package, either specify the name of the package (e.g., “gnupg”) and let
the client tools, when they run on the systems, attempt to find a gnupg
package file that is trusted or provide a gnupg package file that is stored lo-
cally. When providing a package file that is stored locally, the GUI will take
care of adding trust of this specific package file to the configuration files in
addition to uploading the package file to the repository so that it is available.

If any changes are made in the GUI, an icon shows that the local state is out
of sync with the repository. One can then sync with the repository, which
means that the new configuration files and any newly added package files
will be uploaded to the repository.

The GUI is the most convenient tool for day-to-day management of systems
using the client tools. However, some situations require command-line tools
that can perform these tasks. All of the same functionality for configuration
file modification and generation that is done by the GUI can be done using
the command-line tool storkutil.py.

Here’s an example using storkutil.py to add a new group with the name
EXAMPLE_NODES with one system, nodeA.example.com, in the group:

storkutil.py pacgroups include EXAMPLE_NODES nodeA.example.com

Then, to add more systems to the same group:

storkutil.py pacgroups include EXAMPLE_NODES nodeB.example.com \
nodeC.example.com nodeD.example.com nodeE.example.com

Finally, to say that all of the systems in the new group should install gnupg:

storkutil.py pacpackages group EXAMPLE_NODES install gnupg

The command-line tool storkutil.py will have taken care of generating the
configuration files as well as signing them with the private key. The one
thing that the GUI does that storkutil.py doesn’t is upload the files to the
repository for us. Uploading the files to the repository is something that can
be scripted, if desired (for example, using curl).

After the configuration files are generated and uploaded to the repository
using either the GUI or the command-line tools, the client tools running on
any of the nodes will retrieve these newest files and take any actions neces-
sary based on them.

Where Stork Can Help

Stork’s design makes it quite flexible in terms of the roles it can perform for
an administrator. However, its primary focus, and that for which it is opti-
mized, is centralized management of many systems.

It is common for administrators to have a base configuration for all of their
systems. Various systems may then have specialized software needs depend-
ing upon the additional job requirements of the people using those systems

28 ; L O G I N : V O L . 3 3 , N O . 1



or the services they provide. For example, everybody in the finance depart-
ment may need a database program that others in the organization do not.
Further, all of the secretaries and executives may require a specific calendar
management program. Stork makes it easy to manage the software installed
for different groups of users. You can even allow a system to be in multiple
groups, thus allowing the finance department’s secretary to have both the
database and the calendar management software installed.

Stork’s system of secure file transfer, fast and efficient propagation of changes,
and ability to use tarballs as packages make it very useful not only as a pack-
age management system but also as a configuration management system. For
example, suppose an administrator wants to install a set of custom scripts
that cron will run periodically on all of his systems to monitor disk usage.
The administrator can package these scripts as a tarball and use the manage-
ment tools to install the tarball on all machines. The fact that Stork manages
tarballs in a similar way to RPM packages gives the administrator consider-
able control and flexibility without the overhead that can be involved in us-
ing traditional package formats to meet these needs. The tarball packages can
be easily checked for installation, removed cleanly, or even used to satisfy de-
pendencies.

Incorporating package file security decisions made by other users is simple
with Stork’s user trust system. This trust system allows an administrator to
include, in real time, another user’s repository-published list of untrusted
packages into his or her own list. This can be very useful in many organiza-
tions with a separate IT department that focuses on security. Although this
department may publish lists of packages that should not be installed be-
cause of known security problems, traditionally it can be hard for system ad-
ministrators to keep up with the latest changes to such published lists. How-
ever, by being able to automatically include the other department’s package
trust decisions, no further work is needed to stay current with the list of
packages to avoid, which can consist of packages marked as untrustworthy
by name, version, or hash. With this setup, the system administrators can
know that Stork will automatically prevent these untrustworthy packages
from being installed.

Other Solutions

There are other tools available for performing centralized management, but
none are intended to work the same way as Stork. These other systems are
generally configuration management systems that can be used for some de-
gree of package management.

One method used for configuration management is remote command execu-
tion. The tools that provide the ability to remotely execute commands on a
set of nodes all utilize multiple secure shell connections that originate from
the administrator’s own computer. Of these, many are oriented toward spe-
cific networks, such as PlanetLab. One such system is pssh [3], which pro-
vides parallel versions of the openssh tools, including versions of ssh and
scp. Using pssh, an administrator could execute a package management
command on all of their active systems simultaneously. Major disadvantages
with this approach include having to manually repeat the process for new
systems brought online or for systems that were previously down and have
been brought back online; limited groups functionality (done by utilizing
files that contain lists of hosts), but having no functionality similar to Stork’s
composite groups; and an administrator having to make potentially hun-
dreds or thousands of shell connections directly from the administrator’s
own computer in order to install, upgrade, or remove packages.

; LO G I N : F E B R UA RY 2 0 0 8 C E NTR A L I Z E D PAC K AG E M A N AG E M E NT U S I N G STO R K 29



Other solutions that provide similar functionality, all using this same ap-
proach, include:

� Plush [4], which includes a graphical interface (see page 32).
� pShell [5], a command-line-only and PlanetLab-specific tool.
� PlMan [6], which includes a graphical interface and the ability to find

PlanetLab nodes by CoMon queries.

Although package management on large numbers of systems would be easi-
er using these tools compared with having to manually access each system
to do so, none of them focuses on providing efficient and easy-to-use cen-
tralized package management. Using them for this purpose would be far
from ideal, as none of them handles common cases such as nodes that are
down at the time a command is issued or automation of setting up new
nodes that come online.

A more robust way to perform configuration management is to use a power-
ful configuration management system such as Cfengine [7]. Configuration
management systems usually involve a central server that provides configu-
ration information to all nodes, where this configuration information is of-
ten in a format or language specific to the system. These systems provide
considerable general-purpose system administration functionality, such as
ensuring that certain files on all nodes are the same, configuring backups,
and instructing nodes to perform basic package management actions such as
installing a specific package.

Configuration management systems, however, often lack the specialized
functionality for secure, centralized package management that Stork pro-
vides. For example, Stork can be used securely even when an administrator
does not run his or her own repository but instead uses a shared repository.
As no actions are taken by the Stork client tools unless the signatures of
configuration files are verified as having been created by an administrator,
the security of the nodes using the repository does not depend on the secu-
rity of the repository itself.

Stork is not intended to be a configuration management system, just as tools
such as Cfengine are not intended to provide the package management func-
tionality that Stork does. In general, Stork provides a high degree of flexibili-
ty and security for centralized management, with the focus being on pack-
age management. The package management functionality of Stork, which
includes very easy-to-use and lightweight packaging by means of tarball
packages, allows it to function as a configuration management system in
many cases.

Conclusion

For administrators responsible for multiple systems, centralized package
management such as that provided by Stork can save time as well as pre-
vent frustration and mistakes. An administrator need only define once the
package management actions the systems should perform. Using Stork alle-
viates much of the burden of administering large numbers of systems. For
more information or to download Stork, please visit the Stork Web site at
http://www.cs.arizona.edu/stork.

30 ; L O G I N : V O L . 3 3 , N O . 1



R E F E R E N C E S

[1] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peter-
son, T. Roscoe, T. Spalink, and M. Wawrzoniak, “Operating System Support
for Planetary-Scale Network Services,” Proceedings of NSDI ’04 (USENIX As-
sociation, 2004).

[2] K. Park and V.S. Pai, “CoMon: A Mostly-Scalable Monitoring System for
PlanetLab,” ACM Operating Systems Review, 40(1) (January 2006):
http://www.cs.princeton.edu/nsg/papers/comon_osr_06/comon.pdf.

[3] pssh: http://www.theether.org/pssh/.

[4] J. Albrecht, C. Tuttle, A.C. Snoeren, and A. Vahdat, “PlanetLab Applica-
tion Management Using Plush,” ACM Operating Systems Review, 40(1) (Jan-
uary 2006): http://www.cs.williams.edu/~jeannie/papers/plush-osr06.pdf.

[5] “pShell: An Interactive Shell for Managing Planetlab Slices”:
http://www.cs.mcgill.ca/~anrl/projects/pShell/.

[6] “Planetary Scale Control Plane”: http://www.cs.washington.edu/
research/networking/cplane/.

[7] M. Burgess, “Cfengine: A Site Configuration Engine,” USENIX Comput-
ing Systems, 8(3), 1995.

; LO G I N : F E B R UA RY 2 0 0 8 C E NTR A L I Z E D PAC K AG E M A N AG E M E NT U S I N G STO R K 31




