
54 ; L O G I N : V O L . 3 3 , N O . 1

D A V I D N . B L A N K - E D E L M A N

practical Perl tools:
why I live at the P.O.
David N. Blank-Edelman is the Director of Technology
at the Northeastern University College of Computer
and Information Science and the author of the O’Reil-
ly book Perl for System Administration. He has spent
the last 22+ years as a system/network administrator
in large multi-platform environments, including
Brandeis University, Cambridge Technology Group,
and the MIT Media Laboratory. He was the program
chair of the LISA ’05 conference and one of the
LISA ’06 Invited Talks co-chairs.

dnb@ccs.neu.dnb@ccs.neu.edu

W I T H A P O L O G I E S T O T H E G R E AT B U T
deceased Southern writer and a nod to her
fan Steve Dorner, I’d like to take some time
this issue to explore how Perl can help you
with the business of manipulating data
that resides on mail servers. Sending mail
from Perl is a fairly well-known process
(heck, it is even in the Perl FAQ; see perldoc
perlfaq9 for more details), but the process of
pulling data down from a server or moving
it around on that server could use a little
more explanation.

(Quick aside: I intentionally used the formulation
“data on mail servers” instead of mailboxes or mail
messages in that last paragraph. The AUP-breaking
hacks that let you treat outsourced mail systems
like Gmail as remote data stores have forever
changed my view of just what is or can be stored
on those servers. I’ll return to the usual conven-
tions now.)

Before we dive into the how of this process, I think
it is reasonable for you to demand a good answer to
the why. There are a whole host of reasons why you
might want to automate mail operations like this
via Perl. Some of these reasons are immediately ap-
parent if you run the mail server in question. For
example, to truly test that your mail system is
working it is important to be able to check that
your users can actually read their mail. I’ve pub-
licly advocated that people write round-trip tests
for mail systems that involve sending automatic
mail to a test account that is then retrieved in a
similarly automated fashion. This is far better than
just a simple banner scrape to show your MTA is
still listening on a socket.

If you don’t run any mail servers you are still likely
to encounter situations where automated mail-ma-
nipulation knowledge could be useful. For exam-
ple, if your ISP does not perform spam filtering to
your satisfaction, you could pull down all of the
mail in your inbox, run it through whatever rigor-
ous tests suit your fancy (no doubt involving some
goat entrails) and then act on the messages before
they can sully your mail reader. If that ISP can’t do
server-side filtering, your program could take over
that job as well. The list goes on.

POP3 Goes the Weasel

Let’s start someplace simple. The POP3 protocol,
documented in RFC1939, offers a relatively un-

complicated way for a client to interact with a mail store. In most cases a
POP3 client will:

1. Connect to a POP3 server and authenticate as a known user (known
as a mailbox).

2. See if there is new mail.
3. Request the contents of the first new message and squirrel it away on

the local machine.
4. Request that the server delete that message.
5. Repeat #3 and #4 for every remaining new message.
6. Signal that it is done with the connection and exit (with the server

performing the actual deletion of data for the messages marked as
deleted in step #4).

This set of six steps shows virtually all of the operations available in the pro-
tocol. The only two things of interest we did not mention are how “new
messages” are handled and the TOP command. Let’s quickly hit those two
subjects in that order.

If a client always deletes all of the messages once it has downloaded them,
it is trivial to determine when a message is new and requires downloading:
Anything found in the mail store is by definition “new.” But it isn’t always
advantageous to delete upon reading. The most common case where this is-
n’t desirable is one where a user wants to have two separate POP3 clients
looking at the same mailstore (e.g., your home machine and your work ma-
chine). One of them simply downloads the mail; the other will both down-
load and delete it.

The client that doesn’t delete the mail needs a way of remembering which
messages it has seen before so it doesn’t download them a second time. This
is typically done using the POP3 UIDL command. UIDL asks the server to
display a “unique-id listing” for a message or for each message on the server.
This gives the client a piece of information that uniquely identifies each
message on the server, which it can cache for future reference when decid-
ing which messages to download. UIDL is officially “optional” in the RFC,
but I have yet to see a modern POP3 server that didn’t implement it.

I know that you are about to suffer from the DTs because you haven’t seen
any Perl code yet in this column, but hang on for a couple of more sentences
because I want to mention one more POP3 feature I think will come in
handy for you. POP3 also has an optional TOP command that allows the
client to request the headers of a message followed by the first N lines of a
message. This allows a client to get a peek at the contents of a message with-
out having to download the whole thing.

Phew. With that verbiage out of the way, let’s get to some code:

use Mail::POP3Client;

my $pop3 = new Mail::POP3Client(
USER => ‘user’,
PASSWORD => ‘secretsquirrel’,
HOST => ‘pop3.example.edu’,
USESSL => ‘true’,

);

die ‘Connection failed: ‘ . $pop3->Message() . “\n”
if $pop3->Count() == -1;

print ‘Number of messages in this mailbox: ‘ . $pop3->Count() . “\n\n”;
print “The first message looks like this: \n” . $pop3->Retrieve(1) . “\n”;

$pop3->Close();

; LO G I N : F E B R UA RY 2 0 0 8 P R AC TI C A L P E R L TO O LS : W H Y I L I V E AT TH E P.O. 55

This code uses the Mail::POP3Client module to connect to the POP3 server
(over SSL, natch), retrieve the number of messages present, and then display
the first message. There are a few POP3-oriented modules available on
CPAN (the other popular one being Net::POP3), but I tend to like this one
because the methods it provides mostly map directly to the commands in
the protocol. If I had one quibble it would probably be that “mostly” part be-
cause I’d prefer it to offer methods I can infer from the RFC (even as an op-
tion) rather than making up its own. For example, it provides Retrieve(),
also known as HeadAndBody(), whereas RFC calls that RETR.

Still, you can probably guess how you could extend this code to do more so-
phisticated things. Delete(message #) can be called to mark a message for
deletion. Uidl() is available to you, returning an array whose contents contain
the “unique-id listing” for each message or messages sought. TOP is even
present in the form of a Head() method, and so on. Both the Head() and
HeadAndBody() methods will return either a scalar or an array based on their
calling context, so it is easy to get a mail header or message in the form de-
sired by packages such as Mail::SpamAssassin.

IMAP and You Never Go Back

I don’t want to dwell on POP3 any longer, because we have some more inter-
esting fish to fry. The other protocol people use for interacting with their
mail data is IMAP4. IMAP4 is a significantly more powerful (read: complex)
protocol. Its basic model is different from that of POP3. With POP3 it is as-
sumed that the POP3 client polls the POP3 server and downloads mail peri-
odically. With IMAP4 a client connects to a server for the duration of the
mail reading session. (Warning: There is a little hand-waving here, because
of something known as disconnected mode, which we’ll talk about in a sec.)
With POP3 the client is expected to do all of the heavy lifting in the process.
With IMAP4 the discussion between the server and the client is much richer
and so the protocol has to be considerably smarter. Smarter how?

1. IMAP4 can deal with multiple mail folders and their contents
(including other folders). RFC3501 says, “IMAP4rev1 includes
operations for creating, deleting, and renaming mailboxes, checking
for new messages, permanently removing messages, setting and
clearing flags, RFC 2822 and RFC 2045 parsing, searching, and
selective fetching of message attributes, texts, and portions thereof.”

2. IMAP4 has support for disconnected clients. In disconnected mode a
client can operate on a local cache of a mailbox even when not
connected to its server. Later the client will play the changes back to
the server to bring the local cache and the server’s copy into sync. This
is what allows you to sit on a plane without network access, deleting
and filing mail, later to have those changes be propagated to the server
when you get back on the Net.

3. IMAP4 has a much more granular understanding of an individual mail
message. POP3 lets us grab a mail message’s headers or headers plus N
of the first lines of the message body. IMAP4 lets us say, “Give me the
part of the message body that includes the message text but don’t send
me the data for the embedded attachments.” It does this by grokking
MIME natively.

4. Since this isn’t a user-visible thing, you never hear about this last
feature in POP3 vs. IMAP4 comparisons. If you watched the
discussion between a POP3 client and server (actually, most client-
server discussions), it would look like this: command from client,
reply from server, command, reply, command, reply . . .

56 ; L O G I N : V O L . 3 3 , N O . 1

With IMAP4, the client can send a slew of commands at one time and
have the server send responses to any of those commands anytime in
the session. The two don’t have to communicate in lockstep with each
other. Each command is prefixed with a unique tag that the server will
repeat back at the beginning of the response for that command. This
lets both sides keep track of what has been asked and what is being
answered.

Note that your code doesn’t have to be written in a highly asynchro-
nous manner using this capability (and in fact the examples in this
column won’t be), but it is good to know it exists if you do need to
write high-performance IMAP4 code.

I just want to mention up front that given the complexity of the protocol,
working with IMAP4 isn’t always as intuitive as you’d like. Unfortunately,
we don’t have enough room in this column to look at all of the little squirrel-
ly bits, so I’m going to constrain myself to very simple examples. If you start
to write your own programs you must read the relevant RFCs (RFC2060 at a
minimum, RFC2683 suggested) plus the documentation for whatever Perl
module you choose to use.

For the sample code we’re about to see, I’ll be using my current preferred
IMAP module, Mail::IMAPClient. This is the same module that forms the
basis of the superb imapsync program (http://www.linux-france.org/prj/
imapsync/dist/), a great tool for migrating data from one IMAP4 server to
another. In addition to the vote of confidence because of imapsync, I like
this module because it is mostly complete when it comes to features while
still offering the ability to send raw IMAP4 commands should it become
necessary. The other module that I would consider looking at is
Mail::IMAPTalk by the primary developer behind Fastmail.fm. Even though
it hasn’t been updated in a few years, the author assures me that the current
release still works well and is in active use there.

So let’s dig into some IMAP4 code. As an example we’ll use some code that
connects to a user’s mailbox, finds everything that was previously labeled as
spam, and moves those messages to a SPAM folder. We’ll start with connect-
ing to the IMAP server:

use IO::Socket::SSL;
use Mail::IMAPClient;
my $s = IO::Socket::SSL->new(PeerAddr =>’imap.example.com’,

PeerPort => ‘993’,
Proto => ‘tcp’);

die $@ unless defined $s;

my $m = Mail::IMAPClient->new(User => ‘user’, Socket=>$s,
Password => ‘topsecret’);

This code is a little more verbose than I’d like, but I thought it was impor-
tant to demonstrate how one uses an SSL connection to connect to the
server. Mail::IMAPClient doesn’t have SSL built in in the same way
Mail::POP3Client does, so we had to construct an SSL-protected socket by
hand and pass it to Mail::IMAPClient.

Once connected, the first thing one typically does is tell the server which
folder to operate on. In this case we’ll select the user’s INBOX:

$m->select(‘INBOX’);

Now that we have a folder selected, it’s time to get to work. Let’s find all of
the messages in our INBOX that have the X-Spam-Flag header set to YES:

; LO G I N : F E B R UA RY 2 0 0 8 P R AC TI C A L P E R L TO O LS : W H Y I L I V E AT TH E P.O. 57

my @spammsgs = $m->search(qw(HEADER X-Spam-Flag YES));
die $@ if $@;

Now that I have a list of messages in @spammsgs, I can move each one over
to the folder named SPAM:

foreach my $msg (@spammsgs){
die $m->LastError unless defined $m->move(‘SPAM’,$msg);

}

Once we’ve moved all messages we can close the mailbox and log out of the
server:

$m->close(); # expunges currently selected folder
$m->logout;

There’s a hidden detail in the first of these two lines of code that I feel com-
pelled to mention. You might remember from the POP3 discussion that we
talked about messages being “marked as deleted.” The same tombstoning
process takes place here as well. Deletes are always a two-step process in
IMAP4 (flag as \Deleted and expunge messages marked with that flag).
When we requested that a message be moved, the server copied the message
to the new folder and marked the message in the source folder as being
deleted. Ordinarily you would need to expunge() the source folder to actual-
ly remove the message, but RFC2060 says that a CLOSE operation on a fold-
er explicitly expunges that folder, so we get away without having to do it
ourselves.

I’d like to show only one more small IMAP4 example because there’s still
one last major topic left to cover in this column after IMAP4. I mentioned
that IMAP can take apart messages (specifically, into their component MIME
parts). Here’s some code that demonstrates it. In the interests of saving
space, I’ll leave out the code from the last example that performed the initial
SSL socket/connect to server and INBOX select:

my @digests = $m->search(qw(SUBJECT digest));

foreach my $msg (@digests) {

my $struct = $m->get_bodystructure($msg);
next unless defined $struct;

messages in a mailbox get assigned both a sequence number and
a unique identifier. By default Mail::IMAPClient works with UIDs
print “Message with UID $msg (Content-type: “,$struct->bodytype,”/”,

$struct->bodysubtype,
“) has this structure:\n\t”,
join(“\n\t”,$struct->parts) ,”\n\n”;

}

$m->logout;

This code searches for all of the messages whose subject has the word “di-
gest” in it. For each message it attempts to parse the structure of the mes-
sage and print out a list of parts it finds. Here’s a small snippet of output you
might expect from the code:

Message with UID 2457 (Content-type: TEXT/PLAIN) has this structure:
HEAD
1

Message with UID 29691 (Content-type: MULTIPART/MIXED) has this structure:
1
2

58 ; L O G I N : V O L . 3 3 , N O . 1

3
3.1
3.1.HEAD
3.1.1
3.1.2
3.2
3.2.HEAD
3.2.1
3.2.2
3.3
3.3.HEAD
3.3.1
3.3.2
4

If we needed to access just one of the parts of the message we can call body-
part_string with the message number and part number. For example:

print $m->bodypart_string(29691,’4’);

prints out the footer of the message with UID 29691:

Perl-Win32-Database mailing list
Perl-Win32-Database@listserv.ActiveState.com
To unsubscribe: http://listserv.ActiveState.com/mailman/mysubs

Mail::IMAPClient uses the Parse::RecDescent module to take apart MIME
messages. I find that it works most of the time but has some issues with cer-
tain messages. If you are doing a lot of MIME groveling you may find that
you’ll either want to call a dedicated MIME parser or look at the module
Mail::IMAPTalk mentioned earlier, which has the ability to parse messages
into easy Perl structures. If we used Mail::IMAPTalk to fetch the body struc-
ture of that message and turned on its spiffy parse mode, here’s an excerpt of
what we would see stored for the footer part of the message:

3 HASH(0x85bf38)
‘Content-Description’ => ‘Digest Footer’
‘Content-Disposition’ => HASH(0x85d9cc)

empty hash
‘Content-ID’ => undef
‘Content-Language’ => undef
‘Content-MD5’ => undef
‘Content-Transfer-Encoding’ => ‘7BIT’
‘Content-Type’ => HASH(0x85d0f8)

‘charset’ => ‘us-ascii’
‘IMAP-Partnum’ => 4
‘Lines’ => 4
‘MIME-Subtype’ => ‘plain’
‘MIME-TxtType’ => ‘text/plain’
‘MIME-Type’ => ‘text’

‘Remainder’ => ARRAY(0x856528)
0 undef

‘Size’ => 193

Make All the Hairy and Scary Code Go Away

There remains one last thing to mention: If all of this gnarly POP3 and
IMAP4 code has you worried, there are a few modules out there that attempt
to abstract out the details necessary for dealing with mail on a POP3 or

; LO G I N : F E B R UA RY 2 0 0 8 P R AC TI C A L P E R L TO O LS : W H Y I L I V E AT TH E P.O. 59

IMAP4 server. For example, the Email::Folder family (part of the Perl Email
Project, at emailproject.perl.org/wiki/Email::Folder) lets you write code like
this (from the doc):

use Email::Folder;
use Email::FolderType::Net;

my $folder = Email::Folder->new(‘imaps://example.com’); # read INBOX

print $_->header(‘Subject’) for $folder->messages;

The other package worth considering is the all-singing-all-dancing MailBox.
Here’s what the author says: “The MailBox package is a suite of classes for
accessing and managing email folders in a folder-independent manner. This
package is an alternative to the Mail::Folder and MIME::* packages. It ab-
stracts the details of messages, message storage, and message threads, while
providing better performance than older mail packages. It is meant to pro-
vide an object-oriented toolset for all kinds of e-mail applications, under
which Mail User Agents (MUA) and mail filtering programs [sic].”

MailBox is a highly engineered package with tons of functionality (which
may be a good or a bad thing in your eyes). It ships with enough module
tests to choke a horse (which is likely to be a good thing from your manage-
ment’s perspective). MailBox actually uses Mail::IMAPClient under the hood
to do its IMAP4 work, but you’ll never know it because it abstracts all of the
IMAP4 details away for you.

With that pointer, it is time to exit. Have fun manipulating your mail data
from Perl. Take care, and I’ll see you next time.

60 ; L O G I N : V O L . 3 3 , N O . 1

