
; LO G I N : F E B R UA RY 2 0 0 8 I VOY E U R : P E R M I S S I O N TO PA R S E 65

D A V I D J O S E P H S E N

iVoyeur:
permission to parse

David Josephsen is the author of Building a
Monitoring Infrastructure with Nagios (Pren-
tice Hall PTR, 2007) and Senior Systems Engi-
neer at DBG, Inc., where he maintains a gag-
gle of geographically dispersed server farms.
He won LISA ’04’s Best Paper award for his co-
authored work on spam mitigation, and he
donates his spare time to the SourceMage
GNU Linux Project.

dave-usenix@skeptech.org

H A V E Y O U E V E R N O T I C E D T H A T T H E R E
is an adversarial relationship among the
services we provide, the emergent security
controls we put in place to protect them,
and our monitoring tools? It works like this:
We install a service—a Linux box, for exam-
ple—and then we want to monitor it, so we
use a monitoring system with ICMP echo re-
quests (we ping it). Then, like clockwork,
along comes portknocking, a clever bit of se-
curity-related trickery to muck things up.

I once had a friend whose love life worked the
same way. He’d get a good thing going, and then
along would come his French ex-girlfriend to mess
things all up. He knew it was coming. He could see
it a mile away, but she was just so cute and clever
that he couldn’t ever resist (and this too he knew).
He even had a name for it. He called it a “malheur à
trois” (doom triangle). Eventually he moved to
Arkansas (a state, I’m told, that’s like kryptonite to
the French).

You and I both know that we can’t resist port-
knocking no matter what state we run to (it’s that
cool), which is why we use flexible monitoring sys-
tems. We need to be able to work around things
such as security-related trickery from time to time.
And if it can happen to ping, it can happen to pret-
ty much any service we run, so I thought it would
make an interesting subject for a monitoring article
or twelve. But rather than bore you with ICMP, I’d
rather cover something a bit more complex and
practically useful.

If HTTP loses the monitoring popularity contest to
ICMP, it’s not by much. And being a stateless proto-
col, with oodles of strange and intricate authenti-
cation mechanisms, it’s an ideal candidate for us to
take a look at. As a bonus, HTTP follows the mal-
heur à trois pattern perfectly. Long ago we made a
bunch of simple Web sites, for which we created a
bunch of simple monitoring tools, and then along
came single sign-on and Web services.

The safest way to make sure a Web site is function-
al is to request the page and parse it for some text.
This accounts for pretty much everything that
could go wrong, including application server trou-
ble and even a malfunctioning database back end.
But nowadays everyone is using form-based au-
thentication, session cookies, and magically encod-
ed URLs to handle Web site security. It’s not
enough that our tools support basic auth anymore,



they need to act like real users, filling out forms, making multiple requests,
and maintaining application state.

In this article I’ll show you how to use a personal Web proxy to dissect typi-
cal modern HTTP authentication. Then I’ll get you started scripting the
monitoring of your Web apps with good-ol’ wget. The general idea is to cap-
ture a valid authentication session with your Web site, and then extract and
replay the key elements. In short, you’ll perform a man-in-the-middle attack
followed by a replay attack (and without ever removing your white hat).

To play along at home, you’ll need to get a Web proxy, but not a proxy in the
squid sense. You’ll need a special-purpose proxy that will show you the con-
tent of the HTTP requests and replies between you and the site you want to
monitor. Several of these exist, and I’m not particularly fond of any of them,
but the one I tend to use the most often is Burp Proxy [1], which is part of a
suite of tools called the Burpsuite. Launch Burpsuite, or the tool of your
choosing, and point your browser at it by configuring your browser to use a
proxy. For specifics on the use of Burp Proxy, check the help file [2].

Most proxies of this type, including Burp Proxy, have something akin to an
“intercept” button. When intercept is “on” the proxy will intercept requests
and prompt you to either allow or deny them. For our purposes, this isn’t
necessary, so I advise you to turn intercept off. With intercept off, all of the
requests are still captured and stored, but you aren’t prompted for anything.
The stored requests are available in the history tab in Burp Proxy.

The Web app security I’m reverse-engineering today is actually in use by a
real publicly facing entity. I simply poked around the various services-based
sites I use on a regular basis for one that had a good mix of authentication-
related stuff. I’ve anonymized the headers in the listings to avert phone con-
versations with angry lawyers. For the purposes of the article, assume that
we need to monitor a shrubbery management app at www.mysite.com. This
site is part of a larger, landscape-related management services organization,
and as such they use single sign-on at www.authsite.com, so you can man-
age shrubbery and a little path running down the middle without having to
log in twice.

HTTP conversations, as I’m sure you’re already aware, are made up of a
header and data section (similar to SMTP conversations). The server and
client can use the headers to talk about things such as the HTTP version
number and supported features. They’ll also use the headers to pass cookies
back and forth. The data section is for, well, data. Obviously, where authen-
tication is concerned most of the interesting stuff is in the header section.
The notable exception is when a form is used to collect the user name and
password. When this happens, we’ll be interested in the POST data from the
client. Generally the client will make a request of the server, to which it re-
ceives a reply. In HTTP, the server can only react to what it is asked for, so
the server uses things such as HTTP redirects to influence the client when it
needs to. Requests take one of two forms: GET requests and POST requests.
POST requests are used for submitting sensitive information such as user
names and passwords.

To keep things simple in the example that follows, I’ve filtered out quite a
bit of extraneous stuff such as requests for graphics and style sheets. I’ve
also summarized a bunch of requests that provided me authentication-relat-
ed cookies, because they weren’t necessarily relevant to our automating
things later. What’s left are four key transactions that we’ll need our moni-
toring script to replay to get things working. My point in telling you this is
that in real life it takes a bit of time to separate the wheat from the chaff. Be
patient.

66 ; L O G I N : V O L . 3 3 , N O . 1



So let’s get started. I’m intimately familiar with this shrubbery site, as I use it
quite a lot, so I already know that to monitor the page I want, I’m going to
have to fill out a form, and I already know the URL of the authentication
page, but I don’t start my capture there. First I load a public page to see if it
passes me any cookies. Many authentication setups expect you to act like a
human, and when you don’t they’ll redirect you somewhere that suits their
needs. For example, if you show up at an authentication page without cer-
tain cookies, then the authentication code may freak out because it can’t fig-
ure out what you’re asking for permission to see.

Freaking out will probably entail redirecting you back to some public sec-
tion of the site. Automating reactions to this kind of thing can be difficult to
do. Instead, act like a human and go someplace public first the way a human
would. Firing up my proxy and loading the front page, I get the headers in
Listings 1a and 1b. Listing 1a shows a request for the main page of mysite,
and Listing 1b shows the reply. Sure enough, the server immediately hands
me a session cookie. This is a pretty strong indication that our script is going
to need to save and present cookies when we monitor this site in the future.

L I S T I N G 1 A : H T T P H E A D E R F O R R E Q U E S T I N A P U B L I C S E C T I O N

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Cache-Control: public
pragma:
Set-Cookie: JSESSIONID=5BC21F0AC321558C088C4D13ADC35F0D;
Content-Type: text/html;charset=iso-8859-1
Date: Wed, 21 Nov 2007 17:03:22 GMT
Content-Length: 11086

L I S T I N G 1 B : R E S P O N S E T O T H E R E Q U E S T S H O W N I N L I S T I N G
1 A , W I T H C O O K I E

With the proxy in place, I proceed to make a request for something secure.
For a few moments I’m bounced around to various pages on the site. Each of
these represents some back-end application code that is attempting to deter-
mine who I am and whether I am allowed to view what I’m asking for. Along
the way I pick up several more cookies and get transferred to HTTPS. One of
the cookies is a monster called “s_sess,” which appears to contain very spe-
cific information about what I’m asking to see. Another cookie, “s_pers,”
has some gobbledygook that’s probably associated with who I appear to be
and what level of access I currently possess. Eventually, the application de-
cides that I can’t be trusted and punts me to its parent single sign-on author-
ity, authsite. The header of this last request, the one just before I’m redirect-
ed to authsite, is Listing 2a.

GET / HTTP/1.1
Host: www.mysite.com
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.2) Gecko/20060308 Firefox/1.5.0.2
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png

,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

; LO G I N : F E B R UA RY 2 0 0 8 I VOY E U R : P E R M I S S I O N TO PA R S E 67

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Cache-Control: public
pragma:
Set-Cookie: JSESSIONID=5BC21F0AC321558C088C4D13ADC35F0D;
Content-Type: text/html;charset=iso-8859-1
Date: Wed, 21 Nov 2007 17:03:22 GMT
Content-Length: 11086



L I S T I N G 2 A : R E Q U E S T F O R A U T H E N T I C A T I O N , W I T H C O O K I E S C O L -
L E C T E D S O F A R

L I S T I N G 2 B : R E S P O N S E T O T H E R E Q U E S T I N L I S T I N G 2 A

As you can see, I’ve presented the various cookies I received in my interaction with
mysite. The reply in Listing 2b is a redirect to the authsite. Before we go, we’re given
a few tracking cookies for good measure. So our monitoring scripts are certainly go-
ing to need to handle cookies if they expect to play well with this shrubbery manage-
ment site. We could use our proxy to withhold some of these cookies, just to see
which of them are actually required by the site and which are just nice to have, but
the safest thing to do would probably be to make sure our script gets all of them. This
appears to be a JSP back end after all, and one never knows what those Java guys are
thinking.

At authsite, we’re ping-ponged around for a while, picking up more cookies in the
process. Finally, we’re presented with a simple form asking us for our user name and
password. Listing 3a displays the POST header and data that I send to authsite. Our
new cookies are presented to the form processor as well as my user name and pass-
word, which can be seen toward the end of the POST URL. The server responds with
some more cookies and a 302 redirect, as seen in Listing 3b. This redirect is to anoth-
er URL on the authsite, and it appears to be related to requesting SSO-related creden-
tials to access our originally requested shrubbery-related content.

GET /home.jsp?cat=5 HTTP/1.1
Host: www.mysite.com
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.2) Gecko/20060308 Firefox/1.5.0.2
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: https://www.mysite.com/
Cookie: JSESSIONID=5BC21F0AC321558C088C4D13ADC35F0D;s_sess=%20s_cc%3Dtrue%3B%20s_sq

%3Dauthsiteprod%253D%252526pid%25253DUS%2525253AWelcome%2525253Emysite
%2525253shrubberyProgram%2525253APersonalShrubbery%252526pidt%25253D1%252526oid
%25253Dwww.mysite.com/home.jsp%2525253Fcat%2525253D5_1%252526oidt%25253D1
%252526ot%25253DA%252526oi%25253D1%3B; s_pers=%20s_dfa%3Dauthsiteprod
%7C1195667245382%3B

HTTP/1.1 302 Moved Temporarily
Server: Apache-Coyote/1.1
Set-Cookie: StaticTrackingCookie=dzGTdukyUUTcrTcOGzUd; Expires=Mon, 09-Dec-2075 20:17:50 GMT
Set-Cookie: TrackingCookie=24Od2TmMzzdhvdh8O4z2; Path=/
Location: https://www.authsite.com/shrubbery/us/action?request_type=authreg_ssologin&target=https

%3A%2F%2Fwww.mysite.com%2Fhome.jsp%3Fcat%3D5
Content-Length: 0
Date: Wed, 21 Nov 2007 17:03:42 GMT

POST /myshrubberybbage/logon/us/action?request_type=LogLogonHandler&location=us_logon2 HTTP/1.1
Host: www.authsite.com
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.2) Gecko/20060308 Firefox/1.5.0.2
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300

68 ; L O G I N : V O L . 3 3 , N O . 1



L I S T I N G 3 A : A P O S T T O T H E A U T H S I T E

L I S T I N G 3 B : R E S P O N S E T O T H E P O S T I N L I S T I N G 3 A

Connection: keep-alive
Referer: https://www.authsite.com/myshrubbery/logon/us/en/en_US/logon/LogLogon.jsp?DestPage=https%3A%2F

%2Fwww.authsite.com%2Fmyshrubbery%2Fus%2Faction%3Frequest_type%3Dauthreg_ssologin%26target
%3Dhttps%253A%252F%252Fwww.mysite.com%252Fhome.jsp%253Fcat%253D5

Cookie: s_vi=[CS]v1|474464E90000173B-A170C2800002396[CE]; SaneID=67.88.91.16-1195664628842678; s_sess=
%20s_cc%3Dtrue%3B%20s_sq%3Dauthsiteprod%253D%252526pid%25253DUS%2525253AMYCA-Login-
LightVersion%2525253EUserManagement%2525253Aauthsite%252526pidt%25253D1%252526oid
%25253Dfunctiononclick%25252528event%25252529%2525257Bjavascript%2525253Aif%25252528
%25252521checkBeforeSumbit%25252528%25252529%25252529%2525257Breturnfalse%2525253B
%2525257Ddocument.frmLogon.submit%25252528%25252529%2525253B%2525257D%252526oidt
%25253D2%252526ot%25253DIMAGE%3B; s_pers=%20s_dfa%3Dauthsiteprod%7C1195667265665
%3B; s_cc=true

Content-Type: application/x-www-form-urlencoded
Content-Length: 337

DestPage=https%3A%2F%2Fwww.authsite.com%2Fmyshrubbery%2Fus%2Faction%3Frequest_type
%3Dauthreg_ssologin%26target%3Dhttps%253A%252F%252Fwww.mysite.com%252Fhome.jsp%253Fcat
%253D5&Face=en_US&Logon=Logon&b_hour=11&b_minute=17&b_second=32&b_dayNumber=21&b_
month=11&b_year=2007&b_timeZone=-6&UserID=dave&Password=iheartshrubbery&x=0&y=0

HTTP/1.1 302 Found
Date: Wed, 21 Nov 2007 17:04:06 GMT
Server: IBM_HTTP_Server/2.0.42.2-PK29827 Apache/2.0.47 (Unix) DAV/2
Set-Cookie: shrubberyboxvalue=d9ad1ab0-02271d96-5153a860-770139b1;Domain=.authsite.com;Path=/; Secure
Cache-Control: no-cache=“set-cookie,set-cookie2”
Expires: Thu, 01 Dec 1994 16:00:00 GMT
Set-Cookie: shrubberyboxpub=7d38d1a8936edc29f58b2859d260885e;Domain=.authsite.com;Expires=

Fri, 13-Nov-2037 17:04:06 GMT;Path=/
location: https://www.authsite.com/myshrubbery/us/action?request_type=authreg_ssologin&target=https

%3A%2F%2Fwww.mysite.com%2Fhome.jsp%3Fcat%3D5
Vary: Accept-Encoding
Keep-Alive: timeout=30, max=100
Connection: Keep-Alive
Content-Type: text/html
Content-Language: en
Content-Length: 0

HTTP/1.1 200 OK
Date: Wed, 21 Nov 2007 17:04:08 GMT
Server: IBM_HTTP_Server/2.0.42.2-PK29827 Apache/2.0.47 (Unix) DAV/2
Set-Cookie: MR=4;Domain=.authsite.com;Expires=Sat, 30-Jul-2039 18:50:49 GMT;Path=/
Cache-Control: no-cache=“set-cookie,set-cookie2”
Expires: Thu, 01 Dec 1994 16:00:00 GMT
Set-Cookie: Domain=.authsite.com;Expires=Sat, 30-Jul-2039 18:50:49 GMT;Path=/
Vary: Accept-Encoding
Keep-Alive: timeout=30, max=100
Connection: Keep-Alive
Content-Type: text/html;charset=ISO8859-1
Content-Language: en
Content-Length: 363

<html>
<head>

; LO G I N : F E B R UA RY 2 0 0 8 I VOY E U R : P E R M I S S I O N TO PA R S E 69



L I S T I N G 4 : R E P L Y

When we follow the redirect, we’re presented with the reply in Listing 4.
This reply links us back to the shrubbery site by way of a Meta Refresh Tag.
The URL in the tag is what I refer to as a “Magic URL.” As you probably al-
ready know, authsite cannot give us a “yeah, he’s good” cookie, since cook-
ies can only be read by the domain that wrote them. Mysite can’t read cook-
ies authsite gave us. Instead, authsite gives us an authentication token in the
URL. The magic URL should be cryptographically verifiable by mysite,
should work only for us, and should be robust against replay attacks by
folks pretending to be us (hence the magic). In practice it is rarely any of
these things.

So how in heck do we automate all of this? In fact, it turns out to be pretty
simple with the old standby, wget. This great piece of software handles cook-
ies (if you tell it to), automatically follows redirects, and generally just does
the right thing. With wget we can get from public site to SSL-enabled, pro-
tected content in three commands:

The key cookie-related options are —keep-session-cookie, —save-cookies,
and —load-cookies. They’re all pretty self-explanatory. The save and load op-
tions take a filename as an argument and save cookies to, or load them from,
the given file. The option —keep-session-cookies is necessary when you’re
dealing with JSP-style session cookies, since they won’t be saved by default.

The first two commands use —delete-after to get rid of the file once it’s
downloaded, since we’re not really interested in parsing any but the final
content for errors. The last command uses —post-data to post the data we
captured in Listing 3a. Once the data is posted, wget will automatically fol-
low the redirects and meta-refresh, providing and saving cookies as neces-
sary, finally providing a file called parseme.html. This file is the content we
originally wanted, and it may be parsed to discover the state of the site.

This works great, and even lends itself to code reuse if you think ahead a lit-
tle bit. The only caveat is perhaps that, because this particular POST data
contains dates and times, you may have to programmatically generate them
every time you run the script. This is pretty simple to do in any language
you happen to fancy. More complicated authentication schemes may force

<meta http-equiv=“Refresh” content=“1;
url=https://www.mysite.com/home.jsp?cat=5&ctoken=2608C5DB4EFAAEE2B9B4BA4A0245C025062C70F042D494
4F1AD94166EFBD3497A24EE95ADEBEE0E0&crIndex=0&crk=60387FA24B7E7BBBF7A54A08D48AC048&tier=CA&
sid=67.88.91.16-1195664628842678”>

</head>
<body>
</body>
</html>

wget —no-check-certificate —delete-after —keep-session-cookies \
—save-cookies mmmcookies http://www.mysite.com

wget —no-check-certificate —delete-after -keep-session-cookies \
—save-cookies mmmcookies —load-cookies mmmcookies \

https://www.mysite.com/home.jsp?cat=5

wget —no-check-certificate —keep-session-cookies \
—save-cookies mmmcookies —load-cookies mmmcookies \

-O parseme.html —post-data=‘request_type=authreg_ssologin&
target=https://www.mysite.com/home.jsp?cat=5&Face=en_US&Logon=Logon&
b_hour=12&b_minute=17&b_second=32&b_dayNumber=21&b_month=11&
b_year=2007&b_timeZone=-6&UserID=dave&Password=iheartshrubbery

&x=0&y=0’ https://www.authsite.com/myshrubbery/us/action

70 ; L O G I N : V O L . 3 3 , N O . 1



you to parse tidbits out manually in interim steps, but I rarely run into
something that wget doesn’t just handle. If you’re finding yourself doing a
lot of parsing through interim HTML files for this or that, you might want to
have a look at webInject [3]. It’s another great tool which handles most of
the error checking for you and even has a Nagios Plugin mode (but it
doesn’t automatically follow redirects, which is a bit of a drag).

Take it easy.

R E F E R E N C E S

[1] http://portswigger.net/suite/.

[2] http://portswigger.net/proxy/help.html.

[3] http://www.webinject.org/.

; LO G I N : F E B R UA RY 2 0 0 8 I VOY E U R : P E R M I S S I O N TO PA R S E 71




