
; LO G I N : D E C E M B E R 2 0 0 7 YO U R SYSTE M I S S E C U R E ? P ROV E IT ! 35

G E R N O T H E I S E R

Your system is
secure? Prove it!
Gernot Heiser is professor of operating systems at
the University of New South Wales (UNSW) in Sydney
and leads the embedded operating-systems group at
NICTA, Australia’s Centre of Excellence for research in
information and communication technology. In 2006
he co-founded the startup company Open Kernel
Labs (OK), which is developing and marketing operat-
ing-system and virtualization technology for embed-
ded systems, based on the L4 microkernel.

gernot@nicta.com.au

C O M P U T E R S E C U R I T Y I S A N O L D
problem which has lost none of its rele-
vance—as is evidenced by the annual Secu-
rity issue of ;login:. The systems research
community has increased its attention to
security issues in recent years, as can be
seen by an increasing number of security-
related papers published in the mainstream
systems conferences SOSP, OSDI, and
USENIX. However, the focus is primarily on
desktop and server systems.

I argued two years ago in this place that security of
embedded systems, whether mobile phones, smart
cards, or automobiles, is a looming problem of
even bigger proportions, yet there does not seem to
be a great sense of urgency about it. Although there
are embedded operating-system (OS) vendors
working on certifying their offerings to some of the
highest security standards, those systems do not
seem to be aimed at, or even suitable for, mobile
wireless devices.

Establishing OS Security

The accepted way to establish system security is
through a process called assurance. Assurance ex-
amines specification, design, implementation, op-
eration, and maintenance of a system.

The most widely used assurance process is the in-
ternational standard called the Common Criteria for
IT Security Evaluation, or Common Criteria (CC)
for short. CC evaluation is performed against a pro-
tection profile (PP), which represents a standard-
ized set of security properties the system under
evaluation is expected to meet. The idea is that
purchasers of IT systems can define their security
requirements through a PP (or a combination of
PPs) and can then select any system that is certified
to match that PP.

CC compliance is evaluated to a particular evalua-
tion assurance level (EAL). These range from EAL1,
the easiest (requiring little more than a demonstra-
tion that the system has undergone some testing),
to EAL7, the toughest. The goal of a CC evaluation
is to obtain certification from an accredited author-
ity that the system satisfies all the required criteria
for a particular PP at a certain EAL. A higher evalu-
ation level means a more thorough examination of
the system. This does not, however, guarantee
more security; it means only that a more thorough
and systematic attempt is made to eliminate vul-
nerabilities.

NICTA is funded by the Australian government’s
Backing Australia’s Ability initiative, in part
through the Australian Research Council.



A number of operating systems have been certified under CC, including
Mac OS to EAL3, versions of Windows, Linux, and Solaris to EAL4, and the
hypervisor of IBM’s z-Series to EAL5. The Green Hills Integrity microkernel
is said to be undergoing evaluation to EAL6.

But what does this mean? At the toughest assurance level, EAL7 (which to
my knowledge has not yet been achieved by any OS that provides memory
protection), CC evaluation is characterized as “formally verified design and
tested.” In a nutshell, this means two things:

� The system has an unambiguous specification. At EAL7 this must be in
the form of a formal (mathematical) model, and there has to be a for-
mal proof that the specification satisfies the requirements of the PP
(e.g., that no unauthorized flow of data is possible in the system).

� There is a correspondence between the mathematical model and the
actual implementation of the system. This is established by a combina-
tion of means, including a formal high-level design, an at least semifor-
mal low-level design, formal or semiformal correspondence between
them, a detailed mapping of design to implementation, and comprehen-
sive independent testing.

There is also a requirement that the system under evaluation be “simple.”
This is a reflection of the security principle of least authority (POLA) and
economy of mechanisms, which imply that a system’s trusted computing base
(TCB) should be as small and simple as possible.

Testing Required

CC, even at EAL7, relies on testing. Although mathematical proofs are re-
quired for security properties of the system’s API, there is no proof that these
properties hold for the actual implementation. This is why testing is still re-
quired. Testing, as Dijkstra famously stated, “can only show the presence,
not the absence, of bugs.” Hence, even a system certified at EAL7 must be
suspected to contain security flaws.

Why does CC not go further and require an actual correctness proof of the
implementation? After all, formal proofs for computer programs have been
around for decades. Presumably the answer is that it was not considered fea-
sible. Formal code proofs, doable for small algorithms, scale very poorly
with code size. Systems that are undergoing CC certification at EAL6 or
EAL7 are typically separation kernels, very simple OS kernels whose sole
purpose is to provide strict (static) partitioning of resources among subsys-
tems. A typical separation kernel consists of maybe 4,000 lines of code
(LOC), which may be small as kernels go but is huge as far as formal verifi-
cation is concerned.

The Next Step

So, are we stuck with trusting the security of our computer systems to tradi-
tional debugging approaches such as testing and code inspection, enhanced
by model checking (a class of formal methods that may be able to prove the
absence of certain categories of bugs but not all bugs)?

I think not. One of the most exciting developments in this respect is that it
now seems feasible to fully verify the implementation of a complete micro-
kernel. A microkernel is a much more powerful construct than a separation
kernel, as it is a platform on which a general-purpose OS can be implement-
ed. A well-designed microkernel is a superset of a separation kernel, in that

36 ; L O G I N : V O L . 3 2 , N O . 6



it can provide the same functionality, plus more. However, it is inherently
more complex: A minimal microkernel that has sufficient functionality to
support high-performance systems of (virtually) arbitrary functionality
weighs in at some 7,000–10,000 LOC.

In spite of this, complete formal verification of a microkernel is nearing
completion at NICTA. In a project that has been running since January
2004, the API of seL4, the latest member of the L4 microkernel family, has
been formalized as a mathematical model in a theorem prover. A number of
security properties have been proved about this API, with more to come:
The aim is to provide a complete set of proofs corresponding to at least one
of the CC PPs. The seL4 kernel can then be used as the basis of systems
whose TCB is truly trustworthy.

The implementation proof is progressing concurrently with the security
proofs of the API. It uses the refinement approach, which is a multistep pro-
cedure involving intermediate representations (between the specification
and the code). Each refinement step proves that the lower-level representa-
tion has all the relevant properties of the higher level.

In the case of seL4, there are three levels: The formal specification is the
highest, and the actual C and assembler code of the kernel implementation
is the lowest. The intermediate level (which roughly corresponds to CC’s
low-level design) has a concrete meaning, too: It corresponds to a prototype
of the kernel implemented in the functional programming language Haskell,
which serves as an executable specification for porting and evaluation pur-
poses.

The first refinement step is completed; the second (and final) one is in
progress and is due for completion during the second quarter of 2008.

This still leaves a gap: It assumes that the correctness of the implementation
is established by showing the correctness of the code (C and assembler). Al-
though CC makes the same assumption, this nevertheless leaves the C com-
piler and the assembler as trusted components in the loop. Given the quali-
ty, size, and complexity of a typical C compiler, this is still an uncomfortable
level of trust.

The problem could be solved by performing a third refinement step, from
C/assembler to actual machine code. This would require a considerable ef-
fort, but it is inherently no more difficult (and most likely easier) than the
previous refinement steps. However, there is promising work performed
elsewhere on compiler verification. A verified compiler could be leveraged
to close the gap without a further refinement step on the kernel.

Let’s Get Serious About Security!

Security has far too long been treated with insufficient rigor, given what’s at
stake. CC, despite best intentions, could actually be counterproductive
there. By stopping short of the requirement for formal verification at the
highest assurance level, CC has the potential to create a false sense of securi-
ty. After all, a system certified to EAL7 can rightly be claimed to have passed
the highest hurdle of security evaluation. The problem is that this is still in-
complete, and a potential for security flaws remains.

If complete formal verification is possible, it must become a requirement.

; LO G I N : D E C E M B E R 2 0 0 7 YO U R SYSTE M I S S E C U R E ? P ROV E IT ! 37



F U RTH E R R E A D I N G

The approach taken in designing and implementing seL4 is described by
K. Elphinstone et al., “Kernel Development for High Assurance,” Proceed-
ings of the 11th Workshop on Hot Topics in Operating Systems, San Diego, May
2007, USENIX.

Further information on seL4 can be found on the project Web site,
http://ertos.org/research/sel4/, and the Web site of the verification project,
http://ertos.org/research/l4.verified/.

The Common Criteria document is available at http://csrc.nist.gov/.

38 ; L O G I N : V O L . 3 2 , N O . 6




