GARY MCGRAW WITH RIK FARROW

exploiting online
games: an interview

Gary McGraw is the co-author of Exploiting Online
Games and the author of Software Security. He is also
the CTO of Cigital, Inc., a software security and quality
consulting firm that has provided services to some of
the world’s best-known companies for a decade.

| HAD LUNCH WITH GARY DURING

the 2007 USENIX Annual Technical Confer-
ence in Santa Clara, CA.We talked about his
new book, Exploiting Online Games [1], writ-
ten with Greg Hoglund, of Windows Rootkit
fame [2]. Gary presented invited talks about
the ideas in his book during USENIX Annual
Tech and, more recently, USENIX Security.
The summary of his USENIX Security IT ap-
pears in this issue, along with a summary of
a talk by Greg about advanced topics in
writing Windows rootkits.

@SOFTWARE SECURITY SERIES) VAV

EXPLOITING
ONLINE GAMES

~,

GREG HOGLUKD = HHY HcGRAW

;LOGIN: DECEMBER 2007

lLinterviewed Gary via email as he traveled around
the country promoting his book, with the goal of
going beyond what I had already heard from him.

RIK: You mention the ability to teleport in both
your book and your talk. If I understand you cor-
rectly, this simply involves poking in new values
for your location, right?

GARY: The technique you're referring to is called
“telehacking” by most game hackers. Note that
some online games explicitly allow teleporting as
one normal way to get around, but most don’t. In
our book, we use World of Warcraft (a game dis-
tributed by Blizzard Entertainment) as one of our
key examples. We do this because WoW, as it is
known to gamers, is the most popular massive
multiplayer online role playing game (MMORPG)
in the world with over 9 million users, some
400,000 of whom are usually playing together at
any given time. In WoW, teleporting is not a nor-
mal movement option.

In this case, the mistake the game designers made
was to allow the “state” representing character po-
sition to be controlled by the game client running
on the gamer’s PC. This is a fine design decision as
long as gamers play by the rules. But if gamers
want to cheat, all they need to do to telehack is
change the memory values on their PC correspon-
ding to position. You can do that by poking memo-
ry values. We have code for WoW telehacking in
the book in Chapter 7: Building a Bot.

The real problem here is that the game designers
made a critical mistake thinking about trust bound-
aries and where trust should and should not reside.
Clearly any state that is allowed to be completely
controlled by the game client on the potential at-
tacker’s PC should be considered with some skepti-
cism when it arrives at the game server! If you trust
everything the game client says and yet the game
client is under the complete control of a cheater, big

EXPLOITING ONLINE GAMES: AN INTERVIEW 39

40

;LOGIN: VOL. 32, NO. 6

problems ensue. This is the kind of error Greg and I expect to see more of as
massively distributed software systems become more common.

I wrote an article about this trust boundary issue for IEEE’s Security & Priva-
cy magazine [3].

Of course, in the book we also discuss why people would want to cheat.
Briefly, the why has to do with the value of virtual stuff, which can be sold
on a booming middle market. Cheating pays off financially, and it is not at
all clear that it is against the law.

RIK: Will monitor programs, like Blizzard’s Warden, detect if you have sud-
denly changed your location (set of coordinates)? What about other
changes, for example, changing your level, condition or health, or the
amount of gold you have?

GARY: The Warden, which is a monitoring system used exclusively by Bliz-
zard, watches your PC as you play a game. You give Blizzard permission to
do this monitoring on your PC when you agree to the end user license
agreement (EULA). Note, however, that this granting by the user of permis-
sion to install spyware xdoes not make it legal! My suspicion is that Bliz-
zard’s use of the Warden is not likely to be legal in California, where there
are strict antispyware laws on the books.

The Warden as it is currently set up only monitors things outside the game
client process itself. That is, it is concerned with things such as Window ti-
tles (of non-Blizzard Windows), other processes running on your PC, URLs
in your browser, and Instant Messaging buddy lists. It also checks for DLL-
replacement hacks, which we describe in Chapter 6: Hacking Game Clients.
My co-author Greg was worried enough about what the Warden does that
he developed a program called the Governor that keeps tabs on the Warden.
Much of the code for the Governor is included in Chapter 2: Game Hacking
101.

So far, the Warden does not appear to keep track of state changes in the
game client such as a change of position. It would be pretty silly to have the
Warden do that if you think about it, because a cheater sophisticated
enough to poke new values into memory can change the Warden’s brain just
as easily as the game client itself! (The Warden is simply another user mode
process.) The real answer is not to monitor what the client is doing on the
client, but, rather, to keep better track of things on the server so that when
something crazy like a bazillion-mile hop occurs, a red flag is flown to alert
the game minders.

I think one idea that might be useful is a “low-res” vector computed over all
of the state that is controlled by the game client. This vector would be com-
puted and stored on the server side at the time that the state crossed the
trust boundary. Any such computation would need to be quick and dirty.
Then when client state changed or maybe after so much time has elapsed, a
new low-res vector could be very quickly computed and compared with the
stored value. Too big a change in the vector might signal trouble and could
lead to more scrutiny for the player.

The values that you described in the second part of your question would be
ideal candidates for inclusion in the low-res vector. In fact, important inven-
tory items are already tracked closely on the WoW server.

There is no perfect answer to the trust boundary/time and state issue, but
there are a number of basic things that game companies could do that they
are not doing now.

RIK: Earlier on, you mention a low-res vector as a reasonable solution, and
that any checking of that low-res vector needs to be quick and dirty. You ap-

;LOGIN: DECEMBER 2007

pear to be hinting at the enormous computational load that would be re-
quired to actually check that a user’s state does not indicate that that user is
cheating. But shouldn’t game vendors, or SOA vendors, be expected to
maintain the integrity of their offerings, instead of presuming that there isn’t
a problem? Perhaps vendors should provision their computing base to han-
dle checking state.

GARY: Managing security risk always comes down to making tradeoffs. In
this case, the hard question to ask is how much state checking is enough to
thwart cheating? So far the market is answering that it is OK to have none,
but I expect that answer to become less acceptable over time. The stakes in
online gaming have changed, and the security tradeoffs must be reconsid-
ered in this new light.

RIK: You mentioned manipulating the video card, so that when players us-
ing this hack play games, they can see through walls or even the earth in the
game, or have their opponents show up in glowing orange. How is it that
these hacks could avoid detection by gaming companies’ countermeasures?

GARY: This is a kind of hack used against first-person shooter games such as
Counter-Strike. The resulting approach is called an “aimbot.” We describe
aimbots in Chapter 2: Game Hacking 101. The attacker’s insight is that the
video card knows plenty more about the state of the game than the player
actually sees in a traditional view on the screen. After all, the card has to
render all of the graphics in a reasonable amount of time. It does this by pre-
computing and caching lots of things the gamer should not know. It may
know, for example, the exact coordinates of an enemy player.

Early aimbots had no countermeasures. Current countermeasures are most-
ly statistical in nature. If a player is too good to be true, that player comes
under scrutiny. Sometimes really good players are banned simply because
they are “too good to be true.”

RIK: Aren’t monitor programs akin to rootkits? I know that EULAs that
players agree to allow the gaming company to monitor their systems and
even kill programs. But isn't this crossing the line, similar to what Sony
[BMG] did with their CD rootkit for copy protection?

GARY: Monitor programs are not really akin to rootkits technically, but they
are conceptually. Most monitoring programs that we're aware of run in user
mode. Rootkits run in the kernel. A monitoring system in the kernel would
be more effective since it could use stealthy rootkit technology to cloak it-
self. On the other hand, most gamers who play WoW are completely un-
aware of the Warden or the fact that they agreed to be monitored.

Make no mistake about it; the Warden does in fact work. I've been told by
people who experienced it how very quickly the Warden detects the use of
Bubba’s Warcraft Hack and bans a player.

In my opinion, however, relying on monitoring software that users are not
aware of does cross the line as a security mechanism. This won’t stop such
systems from being used, though. Think about some of the data security
technologies currently on the market. They work by installing kernel-level
monitors and basically spying on the user. Corporations are paying good
money for these things.

I would prefer that game companies keep a handle on state at the server and
not spy on the gamers’ other processes running on their own PCs.

RIK: What is the coolest game hack you've come up with yet?

GARY: Greg has come up with some doozies, a few of which I covered in the
talk. One involves the use of a kernel-level process to manipulate the game

EXPLOITING ONLINE GAMES: AN INTERVIEW 1

42

;LOGIN: VOL. 32, NO. 6

program undetectably by living under it. Another involves freezing the com-
putation, doing some calculations to help you cheat, and then injecting state
before unfreezing the computation. The freezing can be accomplished with
hardware breakpoints.

Basically what we have is a classic computer security arms race. In this case,
because the cheaters have complete control over their PCs, they have a pret-
ty large advantage given current game design. Better security design could
help even the scales.

RIK: Did you ever try game hacks that got your account closed or banned?

GARY: When we were writing this book we wanted to start with basics and
go from there. To do that, we wrote some pretty easily detectable code. Dur-
ing testing of the Hoglund_WoW_macro code in Chapter 2: Game Hacking
101, the character Xanier was detected and banned. Greg reports that he has
had over 20 characters banned for various reasons, including characters that
he bought using his wife’s name.

I have never played WoW myself, so I have never clicked on the EULA or
agreed to its terms, nor have I had characters banned from the game.

RIK: Do you see much of a difference between fat game clients and Web 2.0,
where much of an application resides on the client side?

GARY: This is a critical point of the work that I alluded to before. I think the
world is currently evolving toward software systems with lots of distributed
fat clients, and T am really worried about the broken trust modeling that
many of these systems are likely to suffer from. In my opinion, the kinds of
time and state errors that are so pervasive in MMORPGs are the same kinds
of attacks we can expect to see against SOA systems and Web 2.0 systems in
the future.

If this interests you, you should read that IEEE Security & Privacy paper I
mentioned before.

RIK: Can you (briefly) point out some lessons learned (or that should be
learned) for future fat-client software programmers from the MMORPG
world?

GARY: The basic lesson is that there is no substitute for considering the at-
tacker’s perspective while designing and implementing software. This is a
very basic software security lesson that still needs emphasis. Expect attack-
ers to do precisely what “nobody would do” and plan for it. Misuse and
abuse cases at the requirements level (as I describe in my book Software Se-
curity [4]) are very useful for this.

Another critical lesson is that trust boundaries are important. Understand-
ing who controls what information and what that means when you're trying
to protect your system is essential. This gets particularly tricky when a dis-
tributed system is “massive” (with, say, over 250,000 simultaneous users)
and big swaths of the system are outside the game’s control. MMORPGs
have thorny and interesting trust issues.

RIK: In my experience, programmers focus on the functional requirements
of the software they have been asked to create. Just getting the software to
come close to meeting the requirements is hard enough.

It appears that you are expecting programmers to think outside the box of
the specifications for their software. Shouldn'’t there be a way that specifica-
tions could be written in a manner that forced programmers to expect aber-
rant behavior?

GARY: Yes. This is the main challenge faced by software security. We have
had some early success among developers and architects building software

;LOGIN: DECEMBER 2007

for financial institutions, and there is every reason to believe this can work
for other kinds of developers as well.

In my book Software Security 1 spell out these kinds of best practices (called
touchpoints in my parlance) in great detail. There is some brief coverage in
the last chapter of Exploiting Online Games as well.

RIK: Can you imagine a game client that the gaming company could totally
trust? Would doing so require hardware support?

GARY: I don’t think we need to create completely trustworthy clients. What
we do need to do is be much more skeptical about the data that untrustwor-
thy clients send the server. If a client is being used to cheat, that should be
made to stick out like a sore thumb at the server. That way, impossible goals
like “create a completely trustworthy client” can be safely avoided.

Hardware support might help create a trustworthy platform, but these plat-
forms would be trustworthy by the corporations that control them, not by
the people who own them! In any case, approaches relying on hardware have
also been successfully attacked (think satellite TV systems and the xBox).

RIK: You mentioned some advanced game-hacking techniques in your IT,
for example, using multicore systems, and running the game-hacking thread
on one core while the game runs on the other core. Have you actually suc-
ceeded in using this technique? How about running a game client from
within a VM? Do gaming companies attempt to determine whether their
software is running in a VM (or a debugging tool)?

GARY: We have a section in the book related to this question in Chapter 7:
Building a Bot. Many of the techniques we describe there do work in the lab.
We drew a line in the book and decided that it would not be helpful to the
industry to release undetectable botting kits based on the techniques we
outline. The fact is that we're not the only people thinking about these
things, though. There are plenty of others writing and sharing game-hacking
code all over the Internet.

An undetectable botting system is very valuable. All of the sweatshops in
China (where people are paid a pittance to play the game and develop virtu-
al wealth, which is then sold in a middle market) have created quite a de-
mand for botting systems that are not yet banned (that is, that are not obvi-
ously detectable).

There are lots of things that remain to be explored, including rootkit-level
bots, VM-based hacks, multiprocessor attacks of many kinds, and so on. It
important that the game companies understand just how dedicated to cheat-
ing some of their adversaries are.

My hope is that software security will progress nicely in the online game
world and that will in turn teach us valuable lessons for building other soft-
ware. Ultimately, [am a huge proponent of software security.

REFERENCES

[1] G. Hoglund and G. McGraw, Exploiting Online Games: Cheating Massive-
ly Distributed Systems (Reading, MA: Addison-Wesley, 2007).

[2] G. Hoglund and J. Butler, Rootkits: Subverting the Windows Kernel (Read-
ing, MA: Addison-Wesley, 2005).

[3] Article on trust boundary issues: http://www.cigital.com/papers/
download/attack-trends-EOG.pdf.

[4] G. McGraw, Software Security: Building Security In (Reading, MA: Addi-
son-Wesley, 2006).

EXPLOITING ONLINE GAMES: AN INTERVIEW 43

