THE ANALYSIS OF LOG DATA IS BECOM-
ing an increasingly important capability as
more applications generate copious
amounts of run-time information. This in-

DS S]'gn aturem atCh _ formation often has interesting things to

. - . say for those who are listening (including
ng with 1ptab] €s, evidence of events that are significant from

pS ad and fwsnort a security perspective), but the sheer vol-

ume of information often requires auto-

MIKE RASH

Michael Rash holds a Master’s degree in Applied mated tools to make sense of the data. The
Mathematics and works as a Security Architect for
Enterasys Networks, Inc. He is the creator of the ci- 1Ptab]es ﬁrewaﬂ 15 bu“t on top Of the Netﬁ]‘
pherdyne.org suite of open source security tools and ;] -
is author of the book Linux Firewalls: Attack Detection ter framework in the Linux kern e]' and itin
and Response with iptables, psad, and fwsnort, pub- cludes the ability to create verbose syslog

lished by No Starch Press.

messages of the network and transport lay-
er headers associated with IP packets. In ad-
dition, through the use of the iptables
string match extension, the application lay-
er can be searched for evidence of malicious
activity and iptables can then log or take ac-
tion against such packets.

mbr@cipherdyne.org

This article explores the use of psad and fwsnort
[1] to automate the analysis of iptables log mes-
sages with a particular emphasis on passive OS fin-
gerprinting and the detection of application-layer
attacks. Both psad and fwsnort are open-source
software released under the GNU Public License
(GPL). Some familiarity with iptables and the
Snort rules language is assumed in this article [2].
Also, see the INSTALL file bundled with the psad
and fwsnort sources for installation instructions.

Network Setup and Default iptables Policy

I will illustrate network traffic against a Linux
system that is protecting a small internal network
with an iptables policy that implements a default
“log and drop” stance for any traffic that is not
necessary for basic connectivity. In particular, the
iptables policy provides NAT services to allow
clients on the internal network to issue DNS and
Web requests out through the firewall (with the
internal network having the RFC 1918 subnet
192.168.10.0/24 and the external interface on the
firewall having a routable IP address), and the fire-
wall accepts SSH connections from the internal
network. The iptables policy uses the Netfilter con-
nection tracking capability to allow traffic associat-
ed with an established TCP connection to pass
through; also allowed are packets that are respons-
es to UDP datagrams (which may include ICMP

44 ;LOGIN: VOL. 32, NO. 6

port unreachable messages in response to a UDP datagram to a port where
no server is bound). All other traffic is logged and dropped (with iptables
log messages reported via the kernel logging daemon klogd to syslog). This
iptables policy is implemented by the following iptables commands [3]:

iptables -F INPUT
iptables -P INPUT DROP
iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A INPUT -i eth1 -p tcp -s 192.168.10.0/24 --dport 22\
-m state --state NEW -] ACCEPT
iptables -A INPUT -i ! lo -] LOG --log-ip-options \
--log-tcp-options --log-prefix “DROP “

iptables -F FORWARD

iptables -P FORWARD DROP

iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

iptables -A FORWARD -p tcp -s 192.168.10.0/24 --dport 80 -m state \
--state NEW -] ACCEPT

iptables -A FORWARD -p tcp -s 192.168.10.0/24 --dport 443 -m state \
--state NEW -j ACCEPT

iptables -A FORWARD -p udp -s 192.168.10.0/24 --dport 53 -] ACCEPT

iptables -A FORWARD -i ! lo -j LOG --log-ip-options \
--log-tcp-options --log-prefix “DROP “

iptables -t nat -A POSTROUTING -0 ethO -s 192.168.10.0/24 \
- MASQUERADE

Passive OS Fingerprinting

With the iptables policy active on the Linux system, it is time to see what it
can show us from a logs perspective. First, from a system on the internal
network (with hostname “int” and IP address 192.168.10.50), we attempt to
initiate a TCP connection to port 5001 on the firewall (where the firewall’s
internal IP is 192.168.10.1):

[int]$ nc 192.168.10.1 5001

This results in the following iptables log message for the incoming TCP SYN
packet, which is blocked and logged by iptables:

Sep 13 21:22:24 fw kernel: DROP IN=eth1 OUT=\

MAC=00:13:46:3a:41:4b:00:0¢:41:24:56:37:08:00 \

SRC=192.168.10.50 DST=192.168.10.1 LEN=60 TOS=0x00 PREC=0x00\
TTL=64 ID=51104 DF PROTO=TCP SPT=57621 DPT=5001\

WINDOW=5840 RES=0x00 SYN URGP=0\

OPT (020405B40402080A1ECB4C4C0000000001030302)

The log message contains, among other things, source and destination IP
addresses, the IP ID and TTL values, source and destination port numbers,
TCP flags (with just the SYN flag being set in this case), and the options por-
tion of the TCP header (preceded by the “OPT” string). From the perspec-
tive of passively fingerprinting the operating system that generated the TCP
SYN packet against the firewall, the most interesting fields in the log mes-
sage are as follows:

- IP length: LEN=60

-TTL: TTL=64

- The Don’t Fragment bit: DF

- TCP window size: WINDOW=5840

-TCP flags: SYN

- TCP options: OPT (020405B40402080A003F83040000000001030302)

;LOGIN: DECEMBER 2007 IDS SIGNATURE MATCHING WITH IPTABLES, PSAD, AND FWSNORT 45

46

;LOGIN: VOL. 32, NO. 6

(Note that the TCP options string is only included within an iptables log
message if the --log-tcp-options argument is given on the iptables command
line when adding the LOG rule.) These fields are important because they are
the same fields that the best-known passive OS fingerprinting software, pOf,
uses to fingerprint operating systems [4]. This illustrates the completeness
of the iptables logging format, because it is possible to implement the same
passive OS fingerprinting algorithm used by pOf but use iptables log mes-
sages as input instead of sniffing packet data off the wire with a packet cap-
ture library. The psad project implements the pOf fingerprinting algorithm
over iptables log messages, and the TCP log message just listed conforms to
the following pOf fingerprint:

S4:64:1:60:M*,S,T,N,W2: Linux:2.5::Linux 2.5 (sometimes 2.4)

This fingerprint specifies a series of requirements on packet headers separat-
ed by colons and is read as follows:

= “S4” requires that the TCP window size be four times as large as the
Maximum Segment Size (MSS). The MSS value is part of the TCP op-
tions field.

= “64” matches the TTL value and requires that the initial TTL is 64.
(This value has to be estimated for packets that traverse the open Inter-
net.)

= “1” requires that the Don’t Fragment bit is set.

= “60” requires that the overall size of the SYN packet (including the IP
header) be 60 bytes.

= “M* S, T,N,W2” describes the options field of the TCP header; “M*”
means any MSS size, “S” means Selective Acknowledgment is OK, “T”
means that the TCP options contain a time stamp, “N” requires a NOP
option, and “W2” requires a window scaling value of 2.

Decoding the options string from the iptables log message is the most com-
plex portion of the fingerprinting activity. The options string follows Type
Length Value (TLV) encoding, where each TCP option has one byte for the
option type, one byte for the option length, and a variable number of bytes
for the option value [5]. Hence, the options string decodes to the following,
which matches the requirements of the “Linux:2.5::Linux 2.5” pOf signature
(and psad reports this fingerprint within email alerts that it generates [6]):

- MSS: 1460

- Selective Acknowledgment is OK
- Timestamp: 516639820

-NOP

- Window scaling value: 2

Snort Rule Matching with fwsnort

In the previous section, we saw that it is possible to collect iptables log mes-
sages for SYN packets sent from arbitrary hosts and, in many cases, infer the
OS that generated these packets. Passively fingerprinting operating systems
is a nice trick and can reveal interesting information about an attacker, but
in the threat environment on the Internet today the real action is at the ap-
plication layer (OS fingerprinting only requires the inspection of network
and transport layer headers). To get a feel for how important application-
layer inspection is to computer security, one need only examine the Snort
rule set. In Snort version 2.3.3 (the last version of Snort that included rules
released under the GPL instead of the VRT service from Sourcefire), there
are about 150 signatures out of 3,000 that only test packet headers and have
no application-layer match requirement.

;LOGIN: DECEMBER 2007

In the Snort rules language, elements that test the application layer include
the “content,” “uricontent,” “pcre,” “byte_test,” “byte_jump,” and “asnl”
keywords, whereas elements such as “flags,” “ack,” “seq,” and “ipopts”
(among others) test packet header fields. Maintaining an effective intrusion
detection stance for network traffic requires the ability to inspect application-
layer data, and 95% of all Snort rules are focused on the application layer.

» «

The fwsnort project translates Snort rules into iptables rules that are de-
signed to detect (and optionally react to) the same attacks, and the Snort
2.3.3 rule set is packaged with fwsnort. Because the detection capabilities of
iptables are limited to matches on strings via the string match extension [7],
many Snort rules (such as those that contain a pcre match) cannot be trans-
lated. Still, about 60% of all Snort 2.3.3 rules can be translated into iptables
rules by fwsnort because iptables provides a flexible set of facilities to the
user for matching traffic in kernel space. Chief among these facilities is the
ability to match on multiple content strings instead of just a single string;
iptables 1.3.6 introduced this capability by allowing multiple matches of the
same type to be specified on the iptables command line. In the following we
will see an example of a Snort rule that looks for two malicious content
strings returned from a Web server and will see how iptables can be made to
look for the same attack in network traffic.

Some of the most interesting and devastating attacks today exploit vulnera-
bilities in client applications that are attacked via malicious or compromised
servers. Because in many cases thousands of independent client applications
communicate with popular servers, an attacker can take advantage of this
multiplying effect just by compromising a heavily utilized server and forcing
it to launch attacks against any hapless client who connects to it.

An example of a Snort rule that looks for a client-side attack against a Web
browser is rule ID 1735, which is labeled as “WEB-CLIENT XMLHttpRe-
quest attempt.” This rule detects a possible attempt to force a Web browser
to return a list of files and directories on the system running the browser
back to the attacker, via the responseText property, after redirecting the
browser to point to the local filesystem. Fortunately, this attack applies to
older versions of the Netscape and Mozilla browsers, but if a Web server
sends data that matches this Snort rule back to a Web browser running on
my network, I would want to know about it regardless of whether or not the
browser is vulnerable. The XMLHttpRequest attack is tracked in the Com-
mon Vulnerabilities and Exposures (CVE) database as CVE-2002-0354 [8].
Here is the Snort rule for this attack:

alert tcp SEXTERNAL_NET $HTTP_PORTS -> $HOME_NET any \
(msg:"WEB-CLIENT XMLHttpRequest attempt”; \
flow:to_client,established; content:"new XMLHttpRequest|28|"; \
content: "file|3A|//"; nocase; reference:bugtraq,4628; \
reference:cve,2002-0354; classtype:web-application-attack; \
sid:1735; rev:7;)

Note that the Snort rule is looking for two content strings that emanate from
an external Web server (with the source IP being $EXTERNAL_NET and
the source port being $HTTP_PORTS) back to a Web client that is on the in-
ternal network (with the destination IP being $SHOME_NET and the desti-
nation port being “any,” since the local TCP stack would choose a random
high port for the Web session). The two content strings are “new XML-
HttpRequest|28|” and “file|3Al//”. Each of these strings specifies one byte by
its hex code between pipe characters: “|28|” in the first content string, and
“|3AJ” in the second. So, when translating this Snort rule into an iptables
rule, we must account for that. With fwsnort installed, let’s use it to translate

IDS SIGNATURE MATCHING WITH IPTABLES, PSAD, AND FWSNORT 47

48

;LOGIN: VOL. 32, NO. 6

Snort rule ID 1735 and then load it into the iptables policy on the firewall
(some output below has been abbreviated):

[fw]# fwsnort --snort-sid 1735

[+] Parsing Snort rules files...

[+] Found sid: 1735 in web-client.rules

[+] iptables script: /etc/fwsnort/fwsnort.sh
[fw]# /etc/fwsnort/fwsnort.sh

[+] Adding web-client rules.

Examine the /etc/fwsnort/fwsnort.sh script and you can see the iptables
command below. This command uses the - -hex-string argument so that the
Snort content fields can be specified “as is” within the iptables command
(with the bytes between the pipe characters being properly interpreted), and
the rule target instructs iptables to log any matching packet with the prefix
“[1] SID1735 ESTAB”. This prefix informs the user that Snort rule ID 1735
was detected within an established TCP connection (fwsnort interfaces with
the Netfilter connection tracking capability for this), and the rule is the first
rule “[1]” within the FWSNORT_FORWARD_ESTAB chain.

The “--algo bm” argument instructs the string match extension to use the
Boyer-Moore string-matching algorithm to conduct the application-layer
match. With kernels in the Linux 2.6 series, the string match extension
leverages a text-matching infrastructure implemented in the kernel which
supports multiple string-matching algorithms; the Boyer-Moore algorithm
exhibits excellent performance characteristics and is commonly used within
open source and proprietary intrusion detection systems. Finally, the ipta-
bles comment match is used to include the Snort rule “msg,” “classtype,”
and “reference” fields within the iptables rule for easy viewing under a com-
mand such as “iptables -v -n -L FWSNORT_FORWARD_ESTAB.” We then
have:

$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp \
--sport 80 -m string --hex-string “new XMLHttpRequest|28|" \

--algo bm -m string --hex-string “file|3A|//" --algo bm -m comment\
--comment “sid:1735; msg:WEB-CLIENT XMLHttpRequest attempt;
classtype:web-application-attack; reference:bugtraq,4628; rev:7;\
FWS:1.0.1;" -j LOG --log-ip-options --log-tcp-options --log-prefix \
“[11SID1735 ESTAB

Now let us simulate the XMLHttpRequest attack through the iptables fire-
wall against an internal Web browser. For this, we use Perl and Netcat on a
dummy Web server at IP 11.11.1.1 (a randomly selected IP address for illus-
tration purposes only). The following Perl command sends data matching
the two content fields in Snort rule ID 1735 back to the Web client as soon
as it connects:

[webserverl# perl -e ‘printf “new XMLHttpRequest\w28AAAAAAAfiIIe\X3A//"" |nc -1 -p 80
[intI$nc-v 11.11.1.1 80

Connection to 11.11.1.1 80 port [tcp/www] succeeded!

new XMLHttpRequest(AAAAAAASile://

The last line here shows that the Web client received data that matches the
Snort rule; iptables has not interfered with the traffic and has happily let it
pass into the internal network. On the firewall, we see the following iptables
log message (note that the “[1] SID1735 ESTAB” log prefix and the ACK and
PSH flags are set, since this packet was matched within an established TCP
connection):

Sep 14 08:39:24 fw kernel: [1] SID1735 ESTAB IN=ethO OUT=eth1\
SRC=11.11.1.1 DST=192.168.10.50 LEN=85 TOS=0x00 PREC=0x00 TTL=63\

;LOGIN: DECEMBER 2007

ID=23507 DF PROTO=TCP SPT=80 DPT=34646 WINDOW=91 RES=0x00 ACK PSH\
URGP=0 OPT (0101080A650A550ATF663D7A)

At this point we are confident that iptables is able to detect the attack. How-
ever, because iptables is a firewall, it is also inline to the traffic whereas Snort
(unless deployed in inline mode) is merely able to passively monitor the
traffic. Let us take advantage of this by changing the fwsnort command. This
time we use the - -ipt-reject command-line argument to have fwsnort use the
iptables REJECT target against the Web connection in order to knock it
down with a TCP RST packet:

[fw]# fwsnort --snort-sid 1735 --ipt-reject
[+] Parsing Snort rules files...

[+] Found sid: 1735 in web-client.rules

[+] iptables script: /etc/fwsnort/fwsnort.sh
[fw]# /etc/fwsnort/fwsnort.sh

[+] Adding web-client rules.

Let us run the attack simulation once more:

[webserverl# perl -e ‘printf “new \
XMLHttpRequest\x28AAAAAAATiIE\X3A//"" |nc -l -p 80

[intI$nc-v11.11.1.1 80

Connectionto 11.11.1.1 80 port [tcp/www] succeeded!

We see that the client is again able to successfully establish a TCP connec-
tion with the Web server (that is, the TCP three-way handshake is allowed
to complete), but no data comes across. This is because of the TCP RST gen-
erated by the REJECT target against the Web server. The REJECT target only
sends the RST to the IP address that triggered the rule match within ipta-
bles, so the Web client never sees it. However, the iptables REJECT target is
a terminating target, so it also drops the matching packet (in this case the
packet that contains the XMLHttpRequest string). Hence, the malicious traf-
fic never makes it to the targeted TCP stack, and this is an important capa-
bility when some attacks only require a single packet in order to do their
dirty work (the SQL Slammer worm is a good example). Only an inline de-
vice can prevent individual malicious packets from reaching their intended
target.

On the firewall, fwsnort has also created a logging rule that produces the fol-
lowing log message (note that the log prefix now includes the string “REJ”,
indicating that the packet was rejected):

Sep 14 08:41:24 fw kernel: [1] REJ SID1735 ESTAB IN=ethO OUT=eth1\
SRC=11.11.1.1 DST=192.168.10.50 LEN=85 TOS=0x00 PREC=0x00 TTL=63\

ID=46352 DF PROTO=TCP SPT=80 DPT=52078 WINDOW=91 RES=0x00 ACK PSH\
URGP=0 OPT (0101080A650ACA031F66B26C)

Conclusion

This article has focused on two relatively advanced usages of functionality
provided by the iptables firewall: the completeness of the log format, which
makes passive OS fingerprinting possible, and the ability to inspect applica-
tion-layer data for evidence of malicious activity. The psad and fwsnort proj-
ects automate both of these tasks and can provide an important additional
security layer to an iptables firewall. The Snort community has guided the
way to effective attack detection on the Internet today, and iptables can
leverage the power of this community to extend a filtering policy into the
realm of application inspection. Armed with such a policy, iptables becomes
a sentry against application-layer attacks.

IDS SIGNATURE MATCHING WITH IPTABLES, PSAD, AND FWSNORT 49

50

;LOGIN: VOL. 32, NO. 6

REFERENCES

[1] http://www.cipherdyne.org/.

[2] Snort rule writing documentation: http://www.snort.org/docs/
writing_rules/chap2.html.

[3] A script that implements the default iptables policy can be downloaded
from http://www.cipherdyne.org/LinuxFirewalls/chO1/iptables.sh.tar.gz.

[4] Passive OS fingerprinting is really passive stack fingerprinting. That is,
the IP and TCP stacks used by various operating systems exhibit slight
differences, and detecting these differences (i.e., “fingerprinting” the stack)
can allow the operating system that uses the stack to be guessed; see
http://lcamtuf.coredump.cx/pOf.shtml.

[5] There are two exceptions to this: The “NOP” and “End of Option List”
options are only one byte long. See RFC 793 for more information.

[6] See http://www.cipherdyne.org/psad/docs for examples of such alerts.

[7] The iptables u32 extension is being reintegrated with the Netfilter
framework after it was deprecated late in the 2.4 series kernel, so more
complicated arithmetic tests can be written against both packet headers
and application-layer data. The u32 extension essentially emulates the
“byte_test” operator in the Snort rules language.

[8] See http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0354.

