
56 ; L O G I N : V O L . 3 2 , N O . 6

D A V I D J O S E P H S E N

iVoyeur: mystical
flows
David Josephsen is the author of Building a Monitor-
ing Infrastructure with Nagios (Prentice Hall PTR,
2007) and Senior Systems Engineer at DBG, Inc.,
where he maintains a gaggle of geographically dis-
persed server farms. He won LISA ’04’s Best Paper
award for his co-authored work on spam mitigation,
and he donates his spare time to the SourceMage
GNU Linux Project.

dave-usenix@skeptech.org

Y O U K N O W Y O U H A V E A H E A LT H Y,
well-implemented monitoring system
when people in other departments begin
approaching you with their information re-
quirements. Monitoring is usually some-
thing we prefer to do ourselves. It’s just un-
likely that some other organizational unit
will collect the information you want in the
way you want it collected without making
life difficult for you in the form of bloated,
unstable, and/or insecure agent software.
It’s rare in my experience for tech staff to
even consider whether anyone else in the
organization is already doing systems moni-
toring before implementing their own tools.

So when someone voluntarily comes to you and
asks if your system can monitor this or that, you
know you’re doing things well. By this metric I’ve
had more than my share of failures thus far in my
career. I take solace in the words of an old martial
arts instructor of mine who once said, “Nobody
ever learned anything from winning a fight,” and
man, have I learned plenty. But rather than dwell
on my “temporary setbacks,” I’d like to share with
you a success I’ve had, because I think there’s
something to be learned from it as well. My crown-
ing achievement—arguably the pinnacle of my
success in implementing monitoring systems—
came one day when I was asked by a Microsoft
SQL Server DBA for Nagios to monitor the table-
space on his database servers. It doesn’t sound like
much, but then you haven’t met my DBAs.

This came shortly after a meeting to determine
“why the monitoring system was sending false
alarms to the DBA teams.” Even given the meeting
subject, I was not expecting the hostility that greet-
ed a fellow sysadmin and me when we walked into
the conference room. The DBAs had brought pages
of specific instances of “false alarms,” and I hadn’t
even brought a laptop. Oops. So I must have
looked a bit panic-stricken when the VP of soft-
ware development passed out a copy of the moni-
toring system’s “errors” and began to discuss with
those in attendance how the “obviously flawed”
system was sending bogus disk capacity warnings
and that if it couldn’t even monitor disk capacity
correctly, it would need to be replaced. They al-
ready had their own monitoring software, so they
weren’t bucking for budget. Something political
was probably going on, but to this day I’m not sure
what their actual goal was.

I was only a few words into stammering out something like “I’ll have to look
into this and get back to you” when my teammate, who hadn’t forgotten his
laptop, interrupted with “These aren’t false alarms.” He had generated a Na-
gios trends graph of the disk service for one of the database servers and was
visually correlating this with an RRDtool graph of disk utilization for the
same server. He could see at a glance that a disk partition was filling up
every few days at a certain time, and then was being emptied shortly there-
after.

Faced with the graphs, the VP turned to the DBA team and asked, “Well, is
one of you clearing space on partition X on server Y every Tuesday and
Thursday?” A moment of silence and head-shaking ensued followed by a
“Huh?” from the corner of the room. It came from a DBA who until this mo-
ment had been face down typing furiously into a laptop. The VP repeated
his question, to which the DBA replied, “Yeah I clear out a bunch of temp
files whenever I get notifications from the monitoring system. It happens a
couple times a week. I put in a request for more SAN but haven’t heard back
yet.” Evidently he hadn’t paid much attention to the meeting subject line
either.

From that day on, the DBA team projected upon the monitoring system a
sort of mythical all-knowingness. They often assumed we had data that we
didn’t (though when they did this we usually quickly added it; there’s little
difference between presumption and permission IMO). I was in the hallway
on the way back to my desk from that meeting when one of the DBAs ap-
proached and asked if he could get added to the “table-space notifications.”
We weren’t monitoring the table-space at that point, but needless to say we
began that afternoon. Our DBAs as a group were a fiercely protective bunch.
I took it as a huge compliment that he had assumed we were monitoring the
innards of their precious databases and that he was OK with that.

There are a handful of monitoring technologies that can pack large amounts
of very specific, historically relevant data in an easy-to-use, accessible for-
mat. These are the tools that give your monitoring system an all-knowing
air, which, as I learned from this episode, is a wonderful thing to have on
your side. So, this being a security-focused issue, I thought I’d take the op-
portunity to talk about one of the best of this class of tools: NetFlow. Just as
RRDtool made us witch doctors to the DBAs, NetFlow data can make you a
mystic to your security and NOC staff.

NetFlow began life as a Cisco proprietary protocol for traffic accounting in-
formation. There is a fledgling industry standard called IPFIX [1], which is
based on Cisco NetFlow v9. This standard, defined in RFC3917 [2], is gen-
erally reverse-compatible with Cisco’s proprietary NetFlow protocol without
modification, and it has already been implemented by several routing ven-
dors.

Most modern routers from Cisco and Juniper, as well as various open-source
implementations such as pfflowd [3] and nprobe [4], can export NetFlow
data. It is not, however, supported by Cisco PIX firewalls or Cisco switches.
Cisco Layer-3 switches such as the 6000 series can export NetFlow data, but
since such switches offload and cache routing decisions to ASICs (Applica-
tion Specific Integrated Circuits), the flows for packets that traverse the
routing processor may be in a different format from those processed by the
ASICs. In some cases it may not be possible to export flows for any packets
but those that traverse the routing processor, so NetFlow data from these de-
vices may be incomplete.

The overall NetFlow architecture may be superficially thought of in terms of
a specialized, task-efficient syslog implementation. Routers or routing sys-

; LO G I N : D E C E M B E R 2 0 0 7 I VOY E U R : MYSTI C A L F LOWS 57

tems emit UDP NetFlow data to one or more centralized NetFlow collectors,
where they are aggregated, stored, and possibly processed. There is no trans-
port-layer encryption or signing. NetFlow emitters are called “probes.”
Probes are generally given the network socket of a listening collector and
may be configured with options that change the details of the flow data.

A flow is loosely defined as a series of related, unidirectional packets, which
represent half of a two-way conversation between two network entities. Net-
Flow data contains summary metadata about the connection it represents,
and therefore flow data is only exported to the collector once the flow has
ended and can be summarized. By default in Ciscoland, a flow begins when
the relevant traffic is first detected and ends when one of the following crite-
ria is met:

� For TCP traffic, when the connection is terminated (e.g., an RST or a
FIN is encountered)

� When no related traffic has been seen in the last 15 seconds
� When the flow has continued for more than 30 minutes
� When the memory buffer containing the flow has filled up

The IPFIX standard allows for some user-defined criteria for detecting the
beginning and end of a flow. In my experience, the Cisco criteria are usually
sufficient.

Flow summary data is encapsulated into a flow record. Every flow is unique
but may be represented by multiple flow records if, for example, the router’s
memory buffer fills up before the connection is terminated. Flow records are
really great; they contain oodles of info about the connections they repre-
sent, including source and destination IP and port numbers, protocol type,
type of service (TOS), number of octets and packets transmitted, time/day
stamps for the beginning and end of the flow, source and destination AS
numbers, input and output interface names, and even a bitmask represent-
ing the TCP flags that were set during the connection.

You may have noticed that flow records don’t contain any application-layer
data, but the network-layer data that’s available is more than enough to get
great visibility into what’s happening on the network as well as detecting
some much-hated and historically difficult to diagnose problems and attacks
such as DDoS, worms, and viruses. But I’m getting ahead of myself. First,
let’s talk tools.

There are quite a few NetFlow collectors out there, some of which are com-
mercial, such as Cisco’s NetFlow Collector (NFC) [5], and hundreds of
open-source tools of all description. When I look for tools in a monitoring
context, I tend to optimize for flexibility so that I can easily add the data in
question to the existing monitoring interface. I abhor one-off interfaces for
every little thing, and for this reason I’m likely to choose lightweight com-
mand-line tools that don’t have a lot of dependencies and don’t make it diffi-
cult for me to get at the data.

There are at least a couple of new NetFlow tool papers a year, and I don’t
keep up with them as well as I probably should, because Ohio State Univer-
sity’s flow-tools package [6] is a category killer for me. OSU flow-tools, a
collection of small single-purpose tools that are designed to interoperate
with each other via pipes, run the gamut of everything you might want to do
with NetFlow, including collect data from a probe, “tee” data to real-time
analyzers, perform query-based analysis on archived flow records, replay
archived flows, and reassemble connections contained in multiple flow
records. Judging by the quantity of graphical front-ends for visualizing data
from flow-tools, I’m not the only one who considers it a category-killer.

58 ; L O G I N : V O L . 3 2 , N O . 6

The flow-tools install is a typical ./configure && make && sudo make in-
stall. Then, your routers need to be configured to export their NetFlow data.
If they are Cisco routers, the following should work:

ip cef distributed
ip flow-export version 5 origin-as
ip flow-export destination 1.2.3.4 9800

interface FastEthernet0/1/0
no ip directed-broadcast
ip route-cache flow
ip route-cache distributed

Once the data is being exported, the flow-capture tool can collect NetFlow
data from the routers and archive it to disk. The flow-capture tool requires
only a localip/remoteip/port tuple, and it automatically handles log file nam-
ing, compression, and rotation. Command-line options can change most as-
pects of its behavior, including the -D switch, which forces it not to daemon-
ize so that you can run it under daemontools or the superserver of your
choice. It’s possible to connect to the flow-capture daemon on a TCP port to
receive a real-time data feed, suitable for feeding to your favorite parsing en-
gine as well.

Several tools in the package can do creative things with the flow data as it ar-
rives. Flow-fanout is a tool for redistributing the data via the NetFlow proto-
col to additional collectors, and flow-mirror and flow-rsync copy the flow
logs themselves to backup collectors.

The backbone of NetFlow analysis is the combination of the tools flow-cat,
flow-filter, and flow-print. Because flow-tools writes flow data to binary log
files, which are also optionally compressed, and each log file has a metadata
header, a special cat tool called “flow-cat” is required to concatenate them.
Output from flow-cat may be passed directly to flow-print, which outputs
the records in a human-readable format, or it may be piped first to flow-fil-
ter, which filters the output using the criteria of your choosing.

Before you reach into your bag for cut, sort, awk, and grep, I should men-
tion flow-stat. This tool can sort, summarize, and segment the output from
flow-filter. There’s a bit of a learning curve, but if you play around with it for
a while I think you’ll find a few formats you like, and once you have them in
your head, the tool will save you a bunch of time. Formats 8, 9, and 10, the
IP source/destination-based formats, are the ones I tend to use the most of-
ten. It’s worth reading the man page to get an idea of what other formats are
available.

Several conversion programs exist to move the data to external formats. The
flow logs may be exported directly to delimited ASCII formats of various
types with flow-export, the headers may be viewed with flow-header, and
there are even a couple of tools included for exporting the data directly into
RRDtool.

There are several special-purpose analysis tools such as flow-report and
flow-dscan. With flow-report you get summary statistics in a predetermined
format for a given collection of NetFlow logs. The IDS flow-dscan is intend-
ed to spot aberrant behavior in real-time traffic flows. But I’ll leave it to you
to play with those two; I’d like to focus on the core tools and show you some
ways they can help you gain some visibility into your network traffic.

; LO G I N : D E C E M B E R 2 0 0 7 I VOY E U R : MYSTI C A L F LOWS 59

F I G U R E 1 : A R O U T E R S E G M E N T I N G A N R F C 1 9 1 8 N E T W O R K
F R O M T H E I N T E R N E T

Let’s start with a relatively simple example. The router in Figure 1 segments
an internal 192 network from the “internet.” Assuming the flow records for
this router were in /var/flows/, with the following command you could find
all of the internal Web servers that serviced external hosts:

flow-cat /var/flows/ | flow-filter -i2 -P80 | flow-stat -f8

In pseudocode, that’s “filter the flow data for flows coming into interface 2
(-i2) destined for port 80 (-P80) and format the reports using the destina-
tion IP format (-f8).” Adding an “-S3” (sort on field 3) to the flow-stat com-
mand would have sorted the resulting report by the host that sent the most
data.

The “-i” and “-P” switches are reversible via case sensitivity. In other words,
had I specified “-I” instead, I would have filtered the data for flows exiting
interface 2 instead of entering interface 2, and had I specified “-p80” I would
have filtered the data for flows originating on port 80 instead of destined for
port 80.

As you can probably imagine, flow-filter can also filter on host IPs and
network ranges. To make this a bit simpler on the command line, you can
create an ACL file and give macro-style names to IPs and ranges using Cis-
co-standard ACL syntax. For our network we might create the following
macros in a file called my.acls:

ip access-list standard inside permit 192.168.12.0 0.0.0.255
ip access-list standard not_inside deny 192.168.12.0 0.0.0.255

Then we could, for example, find the top 10 bandwidth users on our net-
work with something like:

flow-cat /var/flows | flow-filter -f./my.acls -Sinside | flow-stat -f9 -S3 | grep -v \# |
head -10

Perhaps, upon finding that the top bandwidth user was 192.168.12.42, you
might want to know to which hosts this user was sending data. After adding

ip access-list standard topDude permit host 192.168.12.42

to our ACL file, the command

flow-cat /var/flows | flow-filter -f./my.acls -StopDude | flow-stat -f8

enables us to find out what ports this user is connecting to by using “-f5” in
the flow stat command here. Upon finding out that topDude’s traffic was
destined for port 1434 (which is slammer worm behavior) on various re-
mote hosts, we might search for any other internal hosts exhibiting the same
behavior with, for example:

flow-cat /var/flows | flow-filter -f./my.acls -Dnot_inside -P1434 | flow-stat -f9

Since NetFlow data is in an offline-archived format, this technique can give
you answers without requiring that you talk to the router directly, which is
sometimes not possible. In scenarios such as DDoS attacks, where the NOC
staff will be spending its time waiting at router ssh prompts trying to get a

60 ; L O G I N : V O L . 3 2 , N O . 6

handle on what is happening, NetFlow makes it trivial to quickly isolate the
offending traffic and take action. At the same time it’s a powerful capacity
planning and forensics tool, putting months or years of detailed traffic infor-
mation at your fingertips.

The NetFlow/flow-tools combination as a solution is very scriptable, easy to
install, and gets along excellently with popular monitoring tools, including
RRDtool and Nagios. But its “magic smoke” lies in the means it gives you to
answer very specific questions about the network in an “on-demand” fash-
ion. With NetFlow, you can create facts from hunches and make decisions
out of options in a few keystrokes—the kind of thing that soothsayer repu-
tations are built upon. If you aren’t using NetFlow or something like it cur-
rently, you’re missing out, and I highly recommend you give it a try.

Take it easy.

R E F E R E N C E S

[1] http://tools.ietf.org/wg/ipfix/.

[2] http://tools.ietf.org/html/rfc3917.

[3] http://www.mindrot.org/projects/pfflowd/.

[4] http://www.ntop.org/nProbe.html.

[5] http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/.

[6] http://www.splintered.net/sw/flow-tools/.

; LO G I N : D E C E M B E R 2 0 0 7 I VOY E U R : MYSTI C A L F LOWS 61

