
; LO G I N : O C TO B E R 2 0 0 7 P R AC TI C A L P E R L TO O LS : L E T M E D R AW YO U A P I C TU R E 43

D A V I D N . B L A N K - E D E L M A N

practical Perl tools:
let me draw you a
picture
David N. Blank-Edelman is the Director of Technology
at the Northeastern University College of Computer
and Information Science and the author of the
O’Reilly book Perl for System Administration. He has
spent the past 20+ years as a system/network admin-
istrator in large multi-platform environments, in-
cluding Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He was the
program chair of the LISA ’05 conference and one of
the LISA ’06 Invited Talks co-chairs.

dnb@ccs.neu.edu

A C O U P L E O F Y E A R S A G O I H A D T H E
unusual experience of being asked to help
design my office when we moved to a new
building. Interior design is not something
I’ve ever really dabbled in, but I knew one
thing for sure: It had to have as many white-
boards as possible. Readers of this magazine
know that I asked for this not out of some
fetish for white, slick surfaces. For people
like us, drawing often equals thinking.We
also know the value of drawing pictures to
document infrastructure design, network
configurations, data structures, and the lot.

Tools that can make drawing these pictures easier
are great. Tools that will actually automate the
process are even better. We’re going to look at both
kinds of tools in this column. I want to introduce
you to two of my favorite Perl modules: GraphViz
and Graph::Easy.

GraphViz and Graphviz

GraphViz is an easy-to-use Perl module that pro-
vides a wrapper around the graph visualization
package from AT&T. This package contains a num-
ber of programs, which they describe like this:

The Graphviz layout programs take descrip-
tions of graphs in a simple text language, and
make diagrams in several useful formats such
as images and SVG for Web pages, Postscript
for inclusion in PDF or other documents; or
display in an interactive graph browser.
(Graphviz also supports GXL, an XML di-
alect.)

Graphviz has many useful features for con-
crete diagrams, such as options for colors,
fonts, tabular node layouts, line styles, hy-
perlinks, and custom shapes.

To use the Perl module, you will need to make sure
that the Graphviz programs are installed and work-
ing on your machine. You can download the source
code from http://www.graphviz.org if necessary,
but it is pretty likely that there is a Graphviz pack-
age available for your operating system through
your packaging/installation system of choice (.deb,
.rpm, fink/macports, .exe, etc.). From that point on
you can choose to ignore the native Graphviz text
language (DOT) if you’d like and write only Perl
code.

Pedant alert: The name of the AT&T package is

Graphviz; the name of the Perl module that acts as

a wrapper around Graphviz is called GraphViz

(with a capital V). I don’t know why the difference

in capitalization is there; I can only assume it was

an attempt to drive proofreaders batty.

Let’s look at the basics of this Perl code because there isn’t very much be-
yond the basics you’ll ever need to know to use the module effectively.

The first step is to create a GraphViz object. The creation step is rather im-
portant because it is the constructor call (i.e., new()) that determines the for-
mat of the graph. This format is passed in via parameters such as layout, as
in:

my $graph = GraphViz->new(layout => ‘neato’);

This says that the resulting graph will be processed using the neato algo-
rithm. The Graphviz layout program neato creates spring model graphs (i.e.,
the ones that consist of balls attached together by lines, mimicking the old
molecule-building kits you used in chemistry class). Other layout options
include dot (for directed graphs, i.e., trees), twopi (for radial graphs), circo
(for circular graphs), and fdp (for spring model graphs like neato but using a
different algorithm). The figures in this column are created using the default
dot algorithm (i.e., no layout parameter supplied).

By default the GraphViz module will create diagrams with arrows on the
lines connecting the shapes on the graph. This can be changed by specifying
a “directed” parameter whose value is 0 in the new() call. There are a num-
ber of other GraphViz options available in the new() call, so be sure to see
the module’s (and Graphviz’s) documentation.

Once we have a GraphViz object we can start populating the graph. This is
quite simple:

$graph->add_node(‘router’); # “router” is the name of that new node

If we were to ask GraphViz to create the graph at this point we’d get some-
thing quite Zen (see Figure 1).

F I G U R E 1

If after years of making this diagram the center of your meditation practice
you decide the shape should be a box instead of an oval, you would use this
instead:

$graph->add_node(‘router’, shape => ‘box’);

Furthermore, if you’d prefer the picture in Figure 2 instead, a third attribute
would be specified:

$graph->add_node(‘router’, shape => ‘box’,
label => ‘Big Blinky Important Thing’);

F I G U R E 2

See the module documentation for other attributes that can be used to
change how a node is displayed.

Now that you know how to make all of the shapes you want for your dia-
gram, it is time to connect the dots, err, and nodes. That is done by calling
add_edge() for each connection:

add another node first so we have something to connect to
$graph->add_node(‘web server’);

44 ; L O G I N : V O L . 3 2 , N O . 5

connect the node with the name ‘router’ to the node named ‘web server’
$graph->add_edge(‘router’ => ‘web server’);

You probably can guess that there is a panoply of possible optional parame-
ters we can use. For example, if we wanted to label the link between the
router and the Web server with its connection type, that would be:

$graph->add_edge(‘router’ => ‘web server’, label => ‘1000GB-FX’);

which produces the output shown in Figure 3.

F I G U R E 3

Other parameters let us set presentation attributes such as font, arrow size,
and color and give hints to Graphviz about how to lay out the resulting graph.

We now know how to make nodes and how to connect them, but we haven’t
yet seen how to generate a graph that contains those nodes and connections.
There are a number of methods that start with as_ for creating the actual
graph. For example, as_gif() will create a GIF version, as_png() creates a
PNG, as_ps creates Postscript, and so on. GraphViz supports a healthy num-
ber of output formats. It can also do neat tricks such as spitting out HTML
image map tags.

With the as_* methods it is up to you to decide where the requested output
goes. The as_* methods can take filenames, filehandles, references to scalar
variables, and even code references if you want to feed the data to a subrou-
tine. If you don’t specify an argument it just returns the data, so you can say
something like this:

print $graph->as_ps;

to print the generated Postscript file to stdout.

Congratulations! You have now learned everything you need to know to go
off and start making interesting graphs of your own. To help jumpstart your
creative process I’ll show you one of my examples, and then we’ll mention
some GraphViz-related modules that can further spark your imagination.

Here’s some code that attempts to sniff packets off the Net to show you the
connections from hosts on your network to Web servers:

use NetPacket::Ethernet qw(:strip);
use NetPacket::IP qw(:strip);
use NetPacket::TCP;
use Net::PcapUtils;
use GraphViz;

my $filt = “port 80 and tcp[13] = 2”;
my $dev = “en1”;
my %traffic; # for recording the src/dst pairs

die “Unable to perform capture:”
. Net::Pcap::geterr($dev)
. “\n”

; LO G I N : O C TO B E R 2 0 0 7 P R AC TI C A L P E R L TO O LS : L E T M E D R AW YO U A P I C TU R E 45

if (
Net::PcapUtils::loop(

\&grabipandlog,
DEV => $dev,
FILTER => $filt,
NUMPACKETS => 50

)
);

my $g = new GraphViz;

for (keys %traffic) {
my ($src, $dest) = split(/:/);
$g->add_node($src);
$g->add_node($dest);
$g->add_edge($src => $dest);

}
$g->as_jpeg(“fig4.png”);

sub grabipandlog {
my ($arg, $hdr, $pkt) = @_;

my $src = NetPacket::IP->decode(NetPacket::Ethernet::strip($pkt))
->{‘src_ip’};

my $dst = NetPacket::IP->decode(NetPacket::Ethernet::strip($pkt))
->{‘dest_ip’};

$traffic{“$src:$dst”}++;
}

First we load up the modules we’ll use for network sniffing and dissection
plus GraphViz. We set a Berkeley Packet Filter (BPF) filter string to capture
SYN packets (i.e., the start of a TCP/IP conversation) to the HTTP port. We
set the device for capture and start a capture that will continue until it has
received 50 packets. Each time a packet is captured by the filter it will call a
subroutine called grabipandlog(). That subroutine takes each packet apart to
find the source and destination IP addresses. It then stores a record for each
unique source and destination IP address pair encountered.

After the capture has concluded it is a simple to pull all of the connection
records out of traffic, adding a node for each source and destination IP ad-
dress and connecting the two nodes. A graph is generated and written out as
a JPEG file. Figure 4 is a simple example of what this program will draw.

F I G U R E 4

46 ; L O G I N : V O L . 3 2 , N O . 5

192.168.0.3

66.35.250.558.7.217.31 66.35.250.150

If we wanted to, we could make this code a little more complex by:

� thickening or labeling the links between the nodes to indicate amount
of traffic or

� showing an internal vs. external Web server distinction by varying the
node shapes.

Network traffic diagrams are just one application. The GraphViz module
itself comes with several other examples. GraphViz::Data::Grapher and
GraphViz::Data::Structure can help you understand complex Perl data
structures using two different kinds of graphs. Here’s a sample from the
GraphViz::Data::Grapher examples directory:

Given the data structure defined this way:

@d = (“red”,
{ a => [3, 1, 4, 1], b => { q => ‘a’, w => ‘b’}},
“blue”, undef);

GraphViz::Data::Grapher will output the graph shown in Figure 5.

F I G U R E 5

Outside of the GraphViz package, there are cool modules to visualize regular
expressions, database schema, class diagrams, Makefile structures, parser
grammars, XML code, and so on.

Graph::Easy, Baby

I’d like to show you one more package that is similar to GraphViz but is
spiffier in a number of ways. Graph::Easy (which is well documented at
http://bloodgate.com/perl/graph/manual/index.html) works with a similar
idea to that of GraphViz but takes it even further. For example, in addition
to writing Perl code like that we’ve seen for GraphViz, Graph::Easy can in-
put and output data in Graphviz’s native format. Being able to output DOT
files means Graph::Easy can use Graphviz to create graphs in any graphics
format Graphviz supports. Graph::Easy also has a really legible text format it
will happily parse to create a graph. Let’s look at the Perl and the plain-text
method for graph creation.

; LO G I N : O C TO B E R 2 0 0 7 P R AC TI C A L P E R L TO O LS : L E T M E D R AW YO U A P I C TU R E 47

Here’s some sample Perl:

use Graph::Easy

my $graph = Graph::Easy->new();
$graph->add_edge (‘router’, ‘web server’, ‘1000GB-FX’);
print $graph->as_ascii();

This code shows that the general approach for graph specification in Perl is
very similar to our previous examples but is a bit more compact. Note that
we didn’t have to add_node() before creating a connection. We just specified
that there was a link between two nodes called “router” and “web server”
and that this link should be labeled with “1000GB-FX.” Following that
specification is a method call not found in GraphViz: as_ascii(). This pro-
duces an ASCII drawing like the following:

+————+ 1000GB-FX +——————+
| router | —————-> | web server |
+————+ +——————+

If you’ve ever wanted to make an ASCII flowchart for documentation pur-
poses, now you know an easy way to do it.

I could go on and on about the additional graph features Graph::Easy pro-
vides (e.g., multiple links between two nodes, links that loop from a node
back to itself, links that can point to other links, the ability to create links
that fork in two different directions, node groups, more colors and styles,
etc.) but I’d like to get to an even more interesting feature I mentioned earli-
er. Graph::Easy lets you specify graphs using a very easy-to-read text format.

If we wanted to reproduce the simple “two nodes with a link” example that
has dogged our every step in this column, we could write:

[router] — 1000GB-FX —> [web server]

If we decided the picture made more sense with a bidirectional link, it then
becomes:

[router] <— 1000GB-FX —> [web server]

You can specify more complicated pictures equally easily. For example, the
doc shows this example:

[car] { shape: edge; }

[Bonn] — train —> [Berlin] — [car] —> [Ulm]

[rented] —> [car]

which becomes this picture when as_ascii() is printed:

+———+ train +————+ car +——-+
| Bonn | ———-> | Berlin | ————————-> | Ulm |
+———+ +————+ +——-+

^
|
|

+————+
| rented |
+————+

Turning this textual description into a graph for Graph::Easy to generate
and output can be done in one of two ways:

� Use the provided graph-easy utility script.
� Ask Graph::Easy to parse the description using Graph::Easy::Parser:

48 ; L O G I N : V O L . 3 2 , N O . 5

use Graph::Easy::Parser;

my $descript = ‘[router] — 1000GB-FX —> [web server]’;

my $parser = Graph::Easy::Parser->new();
my $graph = $parser->from_text($descript);

print $graph->as_ascii();

Graph::Easy::Parser has a from_file() method if you’d prefer to read the graph
description from a file. See the Graph::Easy::Parser doc for more details.

In parting, I think it is important to mention that the ease and power of
Graph::Easy hasn’t gone unnoticed by other module writers. They’ve created
add-on modules like those mentioned for GraphViz. Here’s my favorite ex-
ample (coincidentally, by the author of Graph::Easy) taken from the mod-
ule’s documentation:

use Devel::Graph;

my $grapher = Devel::Graph->new();

my $graph = $grapher->decompose(\’if ($b == 1) { $a = 9; }’);

print $graph->as_ascii();

This takes in a piece of Perl code and attempts to generate a flowchart that
Graph::Easy can display. Here’s the output:

################
start
################

|
|
v

+———————+
| if ($b == 1) | —+
+———————+ |
| |
| true |
v |

+———————+ |
| $a = 9; | | false
+———————+ |
| |
| |
v |
################ |
end # <+
################

Let’s end with that pretty picture, drawn just for you. Take care, and I’ll see
you next time.

; LO G I N : O C TO B E R 2 0 0 7 P R AC TI C A L P E R L TO O LS : L E T M E D R AW YO U A P I C TU R E 49

