MASSIMO BERNASCHI, FRANCESCO
CASADEI, AND SAMUELE RUCO

migration of

secure connections
using SockM

Massimo Bernaschi joined the IBM European Center
for Scientific and Engineering Computing (ECSEC) in
1987 in Rome, where he spent ten years working in
the field of parallel and distributed computing. Cur-
rently he is Chief Technology Officer of the Institute
for Computing Applications, which is part of the Ital-
ian National Research Council (CNR). He is also an ad-
junct professor of Computer Science at “La Sapienza”
University in Rome.

massimo®@iac.cnr.it

Francesco Casadei has a master’s degree in Computer
Science from Rome University “La Sapienza.” Since Oc-
tober 2005 he has been with Quadrics Ltd as a soft-
ware engineer. Before then, he spent six months at
the IBM T.J. Watson Research Center (Yorktown
Heights, NY) as a research scholar.

francesco.casadei@quadrics.it

Samuele Ruco graduated in Computer Science in
2006 from Rome University “La Sapienza.” Since then
he has been with Quadrics Ltd, a Finmeccanica Com-
pany, working on embedded systems and parallel
programming.

samuele.ruco@quadrics.it

;LOGIN: AUGUST 2007

SOCKMI'IS A SOLUTION FOR MIGRATING
SSL/TLS secure connections between Linux
systems that extends recent work on TCP/IP
migration [1]. Secure Socket Layer (SSL) and
Transport Layer Security (TLS) [2] add securi-
ty to any protocol that uses reliable connec-
tions, such as TCP, to establish a “virtual cir-
cuit” from a client to a server. We chose to
provide support for SSL migration because
itis one of the leading technologies used
today to secure connections, especially
those to applications hosted by Web servers.
It can be used for encapsulation of various
higher-level protocols such as http (to form
https), ftp, smtp, and nntp. It can also be
used to tunnel an entire network stack to
create a Virtual Private Network (e.g., in
OpenVPN [3]).

The migration mechanism involves the following
levels:

= Network: IP packets must be redirected to
the importing host (the target system).

= Transport: All TCP information must be
transferred to the host that imports the con-
nection.

= Application: Session keys and other sensitive
data needed to ensure the integrity of the se-
cure connection are likewise migrated to the
target system.

There are a number of situations in which the mi-
gration of secure connections can be useful: for in-
stance, when there are requirements of load bal-
ancing, quality of service, and fault tolerance and
it is not possible (or is undesirable) to restart the
connection. With respect to other solutions, (i) it
is able to migrate both ends of a connection; (ii)

it does not require cooperation on both ends; (iii)
it can be activated in any phase of the connection;
and (iv) it does not require changes to existing
Linux kernel data structures and algorithms. More-
over, the mechanism used for sending specific ap-
plication-level information can be used for any ap-
plication protocol.

MIGRATION OF SECURE CONNECTIONS USING SOCKMI

29



30

Application A

SSL

Socket

Kernel

;LOGIN: VOL. 32, NO. 4

- Soe

SockMid Transmission (g5 cleMid { Application B |

Daemon Daemon ! E

| |

SSL SSL : SSL |

Socket Socket % Socket E
User

Kernel

- soc

FIGURE 1: THE DESIGN OF THE MIGRATION MECHANISM
IMPLEMENTED IN SOCKMI

The design of SockMi (see Figure 1) aims at achieving the following goals:

= Transparency: The connection endpoint that does not migrate should
not be affected by the migration mechanism in any way with the ex-
ception of possible (but limited) delays owing to the “triangulation”
mechanism described in Ref. 1. This implies that no information
should be exchanged between the peers to accomplish the migration.

= Portability: The migration mechanism should have minimum impact
on the underlying operating system, meaning that: (i) no patches to the
kernel must be required; (ii) no new system calls must be introduced.
To fulfill these requirements, we implemented the migration mecha-
nism as a loadable kernel module (LKM) and defined an API (applica-
tion programming interface) that hides all implementation details.

= Symmetry: It should be possible to migrate both connection end-
points.

= Versatility: It should provide a general mechanism that supports the
migration of other application protocols.

The main components of SockMi are the module, the daemon, the API, and
the IP redirection mechanism.

The module is the core of the TCP/IP socket migration mechanism. In par-
ticular, the module is responsible for: (i) saving (restoring) the state of mi-
grating sockets during the export (import) phase; (ii) exchanging informa-
tion about migrating sockets with the SockMi daemon; (iii) providing low-
level primitives to activate and control the socket migration facility.

Besides the state of the socket, migrates also affect the corresponding “in-
flight data.” These data are found in the receive and transmit queues of the
socket, which contain, respectively, packets received by the system but not
read by the application and packets to be sent, or packets already sent but
not yet ACKed.

The module holds sockets ready to be imported in three different import
lists, corresponding to the TCP hash tables managed by the Linux kernel:

(1) the bound socket list; (ii) the listening socket list; (iii) the connected
socket list. These lists change their length dynamically when a new socket is
received from the daemon or an application imports a socket. However, to
avoid potential memory problems, we set a maximum length for each list. In
case a list reaches its maximum length, no more sockets can be queued and
the import fails with an error. The module is SMP-safe and supports the pre-
emption mechanism available in the 2.6 kernel. Further information is re-
ported in Ref. 1.

The daemon (SockMid) works in combination with the module to support
the socket migration mechanism and in combination with the libappsockmi



;LOGIN: AUGUST 2007

library to support the application migration mechanism. The daemon car-
ries out different tasks depending on the situation. During the export phase,
it receives the application’s data from the exporting process and the associat-
ed socket state from the module; during the negotiation phase, it communi-
cates with other daemons running on other hosts in order to choose where
to migrate the connection; finally, during the import phase, it writes the state
of importing sockets to the module internal buffers and it handles the im-
ported application protocols. Moreover, the daemon receives importing re-
quests from local processes and checks whether a request matches an im-
ported connection.

During the import and the export phases, the module and the daemon com-
ponents need to exchange information about the state of migrating sockets.
Since the module lives in the kernel address space whereas the daemon is a
normal user process, it is not possible to resort to standard Inter Process
Communication (IPC) primitives to exchange data between them. To over-
come this difficulty we implemented a buffer sharing system via the mmap()
primitive. The module is seen by the daemon as a character device that,
through its mmap() file operation, makes its internal buffers available (i.e., it
acts as a memory device). In this way, kernel buffers can be read and written
by the daemon as if they were in user space. In addition, during these phas-
es, the daemon and the libappsockmi library components need to exchange
information about the application protocol data. To this end, the library sends
http message requests to the daemon, which replies with a status code. When
required, the reply message contains appropriate application data.

The socket migration entails the search for a host willing to “import” the
connection. To be eligible to the import of a connection, a host must run an
instance of SockMid, which defines and supports a communication protocol
among daemons that run on different hosts. This negotiation protocol fol-
lows a plain request-response-confirm scheme that can be summarized as fol-
lows:

= When host A exports a connection, it sends a request in multicast to
the daemons that run on other hosts.

= When a request arrives, a host—say, T—replies, provided that either
the socket is explicitly exported to that host or no specific target host
is defined in the request.

= If host A does not receive a valid response within a predefined timeout
period, the migration fails.

= The first valid response triggers a confirmation mechanism by which
host A notifies the daemon running on host T that it has been selected
as the importing host.

Choosing the first valid response is a very natural yet simple policy. Other
more sophisticated policies based on rules or heuristics could be used. For
example, it could be useful to maintain statistics on previous migrations and
select the target host in such a way as to achieve load balancing among im-
porting hosts. Collective communication among the daemons relies on mul-
ticast. This means that all instances of SockMid have to join the same multi-
cast group and bind() to the same UDP port.

SockMi provides a simple Application Programming Interface (API) to acti-
vate the connection migration mechanism. The API is implemented by two
user space C libraries: libappsockmi and libsockmi, which are part of the
distribution.

The libappsockmi library consists of two functions which provide applica-
tions with an easy-to-use method for importing and exporting secure con-
nections: import_ssl() and export_ssl().

MIGRATION OF SECURE CONNECTIONS USING SOCKMI

31



32

;LOGIN: VOL. 32, NO. 4

To import one or more secure connections, an application calls the library
function import_ssl(). This function is designed to poll the availability of “ex-
ported” SSL sessions matching the import criteria specified by the applica-
tion. If one or more matching sessions are available, then the function im-
ports them immediately, by rebuilding the SSL session from the application
data and by replacing the local socket associated with the connection. Oth-
erwise, if no matching connection is available, the function waits until ei-
ther a timeout occurs or one or more “exported” sessions becomes available
for import. The prototype of the import_ssl() function is defined as follows:

int import_ssl(struct import_ssl_req *irgs, unsigned int nirgs, int timeout);

The arguments to import_ssl() are (in order) an array of import requests, the
number of such requests, and the maximum waiting time until a successful
import occurs (with a negative value blocking import_ssl indefinitely). The
information required to formulate an import request are the following: (i) a
pointer to the main OpenSSL structure to be replaced with the imported ses-
sion; (ii) the preferred state the imported connection should have; (iii) the
set of criteria a connection must match in order to be imported.

The import criteria let the application define the “properties” of the connec-
tion to be imported. Such criteria are the set of allowed secure connection
states, the local and remote IP addresses, and the local and remote TCP
ports. The import_ssl() function tries to fulfill all requests according to a
best-effort policy. Upon completion import_ssl() returns one of the following
values:

= 0, if the function timed out before any secure connection could be im-
ported

m—1, if an error occurs

= the (positive) number of connections that have been successfully im-
ported

Note that, even if successful, the function does not guarantee that all re-
quests have been satisfied. Furthermore, even if the function returned an er-
ror, some secure connections may have been imported. Thus, upon return,
the application should scan the array of requests and check the output field
ssl_state, which either reports the state of the (possibly) imported session or
is set equal to O to indicate that the request could not be satisfied.

Exporting SSL sessions is much simpler than importing, because there is
neither need to specify criteria nor a wait time. To export secure connections
an application calls the function:

int export_ssl(SSL *ssl, int state, int af, const void *to)

The first argument is a pointer to the main OpenSSL structure; it contains all
the references to the information that needs to be transferred. The second
argument is the state of the connection (e.g., connected client but SSL hand-
shake not performed, connected server with SSL handshake performed, lis-
tening server). The last two arguments allow the network address of the im-
porting host to be defined. The to argument may be a null pointer if there is
no need to specify a target system. In this case the function export_ssl() lets
the migration mechanism automatically select a target system, according to
the internal policy of the SockMid daemon. This function returns 0 on suc-
cess or —1 if an error occurs.

The libsockmi library consists of similar functions for sockets not associated
to SSL sessions [1].

In the migration of secure connections, such as those provided by SSL, the
difficulties arise primarily from the need of exporting and importing a num-



;LOGIN: AUGUST 2007

ber of keys and the information required to maintain consistency in the ci-
pher subsystem. We tested our solution with the OpenSSL [4] implementa-
tion of the SSL and TLS protocols. OpenSSL is composed of two layers: (i)
the SSL Record protocol, which is layered on top of TCP and allows the en-
capsulation of various higher-level protocols; (ii) the SSL Handshake proto-
col, which allows server and client to authenticate each other and to negoti-
ate all security-related parameters (e.g., encryption algorithm, cryptograph-
ic keys) before the application protocol begins to transmit or receive data.
The SSL Record protocol takes messages to be transmitted, fragments the
data into manageable blocks, optionally compresses the data, applies a Mes-
sage Authentication Code (MAC), and encrypts and transmits the result. Re-
ceived data is decrypted, verified, decompressed, and reassembled, then de-
livered to the application. This protocol specifies four connection states:
current read and write states and pending read and write states. Each state
specifies a compression algorithm, an encryption algorithm, and a MAC al-
gorithm. Thus the protocol must migrate all four connection states. In addi-
tion, it must migrate the parameters for the following algorithms: the MAC
secret, the bulk encryption keys, the Initialization Vector (IV), and the se-
quence number for the connection in both read and write directions. The se-
quence number must be set equal to zero whenever a connection state be-
comes active, and it is incremented after each record. Moreover, it migrates
other information, such as certificates and public and private keys. Current-
ly, all these data are exchanged in the clear between the exporting daemon
and the importing one. This assumes that the migration of OpenSSL connec-
tions happens in a controlled environment where there is no danger of key
data being sniffed or malicious hosts offering to import connections just to
grab connection-related data.

The target system uses this information to open new SSL sessions with the
same SSL context. The data structures involved in defining the state of a se-
cure connection can be determined by inspecting the SSL structure. These
data structures have cross-references implemented as C pointers to memory
locations. As a consequence, a simple approach based on data copy is not
going to work, because pointers would make no sense in a different address
space both for a migration to another host and for a migration to the same
host. Thus a primary requirement of the migration mechanism is to preserve
the referential integrity among the data structures that define the state of a
connection.

To save the SSL information to a local memory buffer, an application calls
the save_ssl() function defined as follows:

int save_ssl(void **pbuf, SSL *ssl, int ssl_state)

This function allocates a local buffer and saves to it the state of SSL connec-
tion. The arguments are (in order) a pointer to the output buffer, the pointer
to the SSL structure that defines the connection, and the state of the connec-
tion. On success, this function returns the size (in bytes) of the allocated
buffer. On error, —1 is returned.

To restore the SSL information from a local memory buffer, an application
calls the load_ssl() function, defined as follows:

int load_ssl(void *buf, size_t buf_len, SSL *ssl, int ssl_state)

This function rebuilds session keys and other sensitive data needed to en-
sure the integrity of the secure connection. The arguments are (in order) the
local memory buffer, the size (in bytes) of the buffer, the pointer to the SSL
structure (whose contents are updated by the function), and the state of the
secure connection. On success, the function returns 0; otherwise —1 is re-
turned.

MIGRATION OF SECURE CONNECTIONS USING SOCKMI

33



34

;LOGIN: VOL. 32, NO. 4

When a socket migrates to a different host it is necessary to redirect packets
coming from the peer toward the host that imports the socket. To this pur-
pose, we resort to a special combination of Network Address Translation
(NAT) operations. In particular, we employ a Destination NAT (DNAT) such
that packets received by the exporting host for the migrated socket are redi-
rected to the importing host. For this redirection the standard NAT capabili-
ties offered by the netfilter module of the Linux kernel are adequate [5]. The
DNAT is triggered by the daemon running on the exporting host.

In addition, packets sent to the peer must have the same IP source address
as the original host (for otherwise the peer would reply with an RST pack-
et). In this case, we employ a Source NAT (SNAT) on the importing host
such that the source address of packets sent by the imported socket is trans-
lated into the address of the exporting host. The SNAT required a modifica-
tion to the standard NAT mechanism since the latter has a side-effect: The
reply tuple is changed according to the applied address translation. The
problem is that netfilter expects to receive packets having a destination ad-
dress equal to the translated source address whereas, in our case, the DNAT
sets the destination address equal to the real address of the importing host.
To solve the problem, we resorted to the NAT helper mechanism available in
the netfilter architecture. Basically, it allows us to invoke a custom proce-
dure we wrote that performs the address translation but does not alter the
reply tuple. Note that, in case the host that exports the socket can (or must)
give up its IP address in favor of the host that imports the socket, it is much
easier to add an “alias” IP address to the importing host. Further informa-
tion about IP packet redirection is available in Ref. 1.

As shown in Figure 2, the migration consists of three phases: (i) export, (ii)
negotiation, and (iii) import.

SockMi Migration Mechanism

L lIbcp psockml
Application . —COPISOCKIT, |
39T oo Al .export connection export_ssl() —|-

ocket 1 Cl.import connection import_ssl () —
— 1
linsockml
Application e:(1:\.:\1:'!:_s|:|4:kel:til-:.‘—u'cx ort socket
SSL session import_socket () C3.import socket
socket 2

A2import

LA appll.ca&lon

K AN ata

| socketl | Ad.copy
Iy K stuctures
C2.cxport
C4 set icati
eocket2 |~ sEmchures applic a&l e
AS.export| B3. import
TCR/IP Stack butier| | |budfer
sockmid
']
It import lication
e | [ men | | e
Bl.transfer Blreccive
connection connection

FIGURE 2: THE MECHANISM FOR THE MIGRATION OF AN SSL
CONNECTION



;LOGIN: AUGUST 2007

The first phase is activated by the application that wants to export the secure
connection. This phase can be summarized as follows:

Al. The exporting application calls the export_ssl() function.

A2. The libappsockmi library saves all required SSL information into a
memory buffer. For this purpose, it uses the save_ssl() function. Then
the library transfers the buffer to the daemon through an http message
and the daemon saves the buffer in a local file that is transferred to the
importing daemon during the negotiation phase (see Bl and B2).

A3. The library exports the associated socket using the export_socket()
function.

A4. The module saves the state of the exporting socket into a memory
buffer.

A5. Finally, the module exchanges information about the exporting
socket with the daemon.

The negotiation phase can be summarized as follows:

B1/B2. The exporting daemon communicates with daemons running on
other hosts in order to choose where to migrate the connection; the
selected daemon receives all data about the exported secure connec-
tion.

B3. Then the importing daemon writes the state of the importing socket
to the module internal buffers.

The last phase can be summarized as follows:

Cl. The importing application calls the import_ssl() function specifying
an array of requests.

C2. The libappsockmi library asks the daemon whether one matching
connection is available. On success, the daemon’s reply contains the
data of the matching connection and the criteria used for importing
the associated socket.

C3. The library imports the associated socket using the import_socket()
function specifying the received criteria.

C4. Finally, the module restores the state of the importing socket into
the kernel data structures.

SockMi is a mechanism, based on the cooperation of a kernel module and a
daemon, that allows one to migrate an end of a secure connection to another
Linux system running the same software. It is a complete solution for the
migration of the network, transport, and application layers. It is compatible
with OpenSSL version 0.9.7i and with Linux versions 2.4 and 2.6. The
source code is available from http://sockmi.sourceforge.net.

Recently, we started to test the migration mechanism with real-world proto-
cols and applications that use a secure connection (e.g., https, sftp, ssh). An-
other possible future activity is to add support for the authentication of the
daemons that, in order to work in a potentially hostile environment, need to
use secure channels for their communications. As to its porting to other
UNIX-like operating systems, this depends mainly on the availability of the
kernel source code. From this point of view, the porting looks possible, for
instance, to systems belonging to the BSD family. OpenSSL is available on
Windows systems, but at this time we have not yet analyzed if or how these
systems can support the migration of TCP connections. This appears to be,
in any case, a major effort since the implementation of sockets in Windows
is significantly different with respect to UNIX-like operating systems.

MIGRATION OF SECURE CONNECTIONS USING SOCKMI

35



REFERENCES

[1] M. Bernaschi, E Casadei, and P. Tassotti, SockMi: A solution for migrating
TCP/IP connections, 15th EUROMICRO International Conference on Paral-
lel, Distributed and Network-Based Processing (PDP *07), pp. 221-228,
2007. Available from http://sockmi.sourceforge.net/public.html.

[2] T. Dierks and C. Allen, The TLS Protocol, RFC 2246, January 1999.
[3] http://openvpn.net.

[4] http://www.openssl.org.

[5] http//www.netfilter.org.

36 ;LOGIN: VOL. 32, NO. 4





