
56 ; L O G I N : V O L . 3 2 , N O . 3

D A V I D B L A N K - E D E L M A N

practical Perl tools:
impractical Perl
tools
David N. Blank-Edelman is the Director of Technology
at the Northeastern University College of Computer
and Information Science and the author of the book
Perl for System Administration (O’Reilly, 2000). He has
spent the past 20 years as a system/network admin-
istrator in large multi-platform environments,
including Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He was the
program chair of the LISA ’05 conference and one of
the LISA ’06 Invited Talks co-chairs.

dnb@ccs.neu.edu

I ’ M W R I T I N G T H I S C O L U M N R I G H T
around the unofficial U.S. holiday of April
Fool’s Day. I realize you won’t be reading it
until several months after this day has
passed, but pretend the U.S. Congress was
so enamored with how well the daylight-
saving-time rules changes went that they
began moving around other dates on the
calendar willy-nilly.

Given that you are now reading this column on
the new date for April Fool’s Day, I now have the
license to look at some of the least practical of the
Perl modules available. However, despite my best
attempts to the contrary, I fear you’ll probably
learn something practical from this exploration
(but shh, don’t tell anyone!).

The mother lode of impracticality in the Perl
world is the Acme:: namespace. In the gaggle of
modules whose name begins with Acme:: you can
find modules that extend the language in weird
and wacky ways or play around with various pro-
gramming ideas. These modules range from the
exceptionally clever to the downright stupid. But
sometimes even stupid code examples can teach
us something.

Cleaner, Brighter Code

The progenitor of the Acme:: namespace is the
module Acme::Bleach (originally just called
Bleach.pm) by Damian Conway. Written in slight-
ly cryptic code (there’s a good explanation of it at
http://www.perlmonks.org/?node_id=270023), the
Acme::Bleach module takes a script that consists
of perfectly ordinary looking Perl code like:

use Acme::Bleach;

open my $EXAMPLE, ‘<’, ‘example.txt’ or die
“Can’t open example: $!\n”;

while (<$EXAMPLE>){
print;

}
close $EXAMPLE;

and transforms the file into:

use Acme::Bleach;

(plus another 107 lines of carefully selected
whitespace characters)

June07login_press.qxd:login June 06 Volume 31 5/27/07 10:23 AM Page 56

; LO G I N : J U N E 2 0 0 7 P R AC TI C A L P E R L TO O LS : I M P R AC TI C A L P E R L TO O LS 57

That file, believe it or not, actually runs and does the same thing as the
original program. This idea of a program that could rewrite itself into an
obfuscated form that is self-deobfuscating on the fly quickly caught on in
the Perl community as a fun thing to try. Now there are a number of
modules like this available. Some of them are actually bordering on being
useful.

Let’s look at two examples. (1) Acme::PerlTidy runs the Perl::Tidy cleanup
process on itself every time it is run, thus assuring your code is always as
readable as possible. (2) Acme::PerlML takes your perl code and translates
it to an XML representation. For example, the sample code above (substi-
tuting Acme::PerlML for Acme::Bleach) becomes:

use Acme::PerlML;

<document><token_whitespace></token_whitespace>
<statement><token_word>open</token_word><token_whitespace></token_
whitespace>
<token_word>my</token_word><token_whitespace></token_whitespace>
<token_symbol>$EXAMPLE</token_symbol>
<token_operator>,</token_operator><token_whitespace></token_white-
space>
<token_quote_single>'<'</token_quote_single>
<token_operator>,</token_operator><token_whitespace></token_white-
space>
<token_quote_single>'example.txt'</token_quote_single>
<token_whitespace></token_whitespace>
<token_operator>or</token_operator><token_whitespace></token_white-
space>
<token_word>die</token_word><token_whitespace></token_whitespace>
<token_quote_double>"Can't open
example:$!\n"</token_quote_double>
<token_structure>;</token_structure>
</statement><token_whitespace></token_whitespace>
<statement_compound><token_word>while</token_word><token_whitesp.
. .
(plus more lines of a rather ugly XML representation of the Perl code).

You could imagine someone finding this transformation to be actually
helpful, perhaps in conjunction with an XML database or XML accelera-
tion appliance.

Before we leave the Acme::Bleach family to look at more useful modules, I
think it is worth pointing out that the general concept of messing with the
source code of a script right before it is executed is an interesting one that
opens up many possibilities.

Perl has had a feature to do this for some time (although it isn’t used by
the Acme::Bleach module) called “source filtering.” With source filtering
you can write code that processes the source code being read into the Perl
interpreter before it is executed. If you can fiddle with source like this before
handing it to Perl to interpret it gives you the power to write your source
in any form you’d like (just as long as it eventually can be transformed
back to basic Perl syntax). Just to show the power of the concept, Damian
Conway has written a module that allows you to program in Perl using
Latin. See the perlfilter man page if you are interested in this concept.

use Acme::PerlML;

<document><token_whitespace></token_whitespace>
<statement><token_word>open</token_word><token_whitespace></token_whitespace>
<token_word>my</token_word><token_whitespace></token_whitespace>
<token_symbol>$EXAMPLE</token_symbol>
<token_operator>,</token_operator><token_whitespace></token_whitespace>
<token_quote_single>'<'</token_quote_single>
<token_operator>,</token_operator><token_whitespace></token_whitespace>
<token_quote_single>'example.txt'</token_quote_single>
<token_whitespace></token_whitespace>
<token_operator>or</token_operator><token_whitespace></token_whitespace>
<token_word>die</token_word><token_whitespace></token_whitespace>
<token_quote_double>"Can't open example:$!\n"</token_quote_double>
<token_structure>;</token_structure>
</statement><token_whitespace></token_whitespace>
<statement_compound><token_word>while</token_word><token_whitespace></token_whitespace>
<structure_condition><token_structure>(</token_structure>
<statement_expression><token_quotelike_readline><$EXAMPLE></token_quotelike_readline>
</statement_expression><token_structure>)</ token_structure>
</structure_condition>
<structure_block><token_structure>{</token_structure>< token_whitespace>
. . .

June07login_press.qxd:login June 06 Volume 31 5/27/07 10:23 AM Page 57

58 ; L O G I N : V O L . 3 2 , N O . 3

Not Just Fun and Games

The set of Acme:: modules I tend to respect the most are those that play
with various language concepts or attempt to solve real problems while
still maintaining a sense of humor. An example of the latter is
Acme::RemoteINC, which describes itself as the “Slowest Possible Module
Loading.” That’s being overly modest. What it really does is fetch a module
using FTP from some repository in a transparent way if it isn’t available
when the program runs. Even if this turns out to be a slow operation, you
have to admit the concept is cool and ripe for further exploration.

Similarly strange but very clever in its own way is Acme::Scripticide, which
allows you to write scripts that delete themselves. Why is this useful? The
author explains this in the documentation:

Believe it or not this is handy if you have a one time job to execute:

$script uses Acme::Scripticide
system $script if -e $script;

or say to create static files from a database:

in flowers.pl (copy this to whatever names you want and execute:)
use Acme::Scripticide qw(good_bye_cruel_world);
good_bye_cruel_world(‘.html’, get_html($0));

now flowers.pl does not exist and flowers.html is there.

You could have a directory full of those types of scripts and glob() them
in and execute each one; once that is done, you have a directory of cor-
responding static html files.

I get excited about stuff like this because it opens up a whole new avenue
of thinking for solving certain kinds of problems.

Mucking about with language constructs using Acme:: modules has a simi-
lar expanding action on one’s brain. For example, the Acme::BottomsUp
module lets you order your really long compound Perl statements closer to
the way you might explain the statement to someone. Once again I’m
going to quote from a module’s documentation, because it has a superb
example. It shows that a code fragment like this:

my @arr = (1..10);

print # lastly, display result
join “:”, # and glue together
map { $_**3 } # then cube each one
grep { $_ % 2 } # then get the odd ones
@arr # first, start with numbers

;

“reads better” if you use the Acme::BottomsUp module like so:

my @arr = (1..10);

use Acme::BottomsUp;
@arr # first, start w/ numbers

grep { $_ % 2 } # then get the odd ones
map { $_**3 } # then cube each one
join “:”, # and glue together
print # lastly, display result

;
no Acme::BottomsUp;

June07login_press.qxd:login June 06 Volume 31 5/27/07 10:23 AM Page 58

; LO G I N : J U N E 2 0 0 7 P R AC TI C A L P E R L TO O LS : I M P R AC TI C A L P E R L TO O LS 59

If you’ve worked with other programming languages that use a different
statement order, you won’t find this idea to be particularly revolutionary.
But for someone who has only written code like the “before” sample here,
this module might provide a welcome ponderable about language design.

Let me give you one last titillating example in the language vein before we
move on: Acme::use::strict::with::pride. This module is designed (and I
quote) to “enforce bondage and discipline on very naughty modules.” As
soon as you load this module, all subsequent modules loaded by the script
via “use” or “require” will find themselves running with use strict and use
warnings turned on (and I quote again) “whether they like it or not.”

A::u::s::w::p provides us with two things:

1. The chance to enforce the same level of discipline on the modules you
import from someone else that you might impose on yourself when
writing code.

2. Another good ponderable about what other sorts of context or manip-
ulation could be applied to these external modules as they are loaded.

Getting More Entertaining

For a column with “impractical” in the name we’re drifting perilously close
to abject seriousness. Let’s get a little lighter by looking at two modules
that solve a “problem” that we may not have considered easily solvable.

The first module is actually not necessary as of this writing but it is nice to
know it exists. Acme::DNS::Correct was written to correct for a condition
that afflicted the Internet for a brief while back in 2003. This was the great
VeriSign SiteFinder debacle. At some point VeriSign decided it would help
the Internet by making sure that all domain names in the .COM and .NET
top-level domains would resolve to something when queried, even the
ones that didn’t exist. This broke all sorts of things and so modules such as
Acme::DNS::Correct were developed.

Acme::DNS::Correct lets you do all of the standard Net::DNS resolution
stuff but is smart enough to remove all references to the $ROOT_OF_EVIL,
VeriSign’s SiteFinder server, when it encounters them. Luckily that “service”
was quickly run out of town. Earthlink pulled a similar stunt earlier this
year (http://kb.earthlink.net/case.asp?article=187117), so it is good to know
that modules like this are still available should this idea rear its ugly head in
any substantial way again.

A second Acme:: problem-solver module is the Acme::MetaSyntactic breed
of modules. Acme::MetaSyntactic is dedicated to the problem of finding
good example variable names when “$foo” and “@bar” ceases to cut it. I
tend to use “$fred”, “$barney”, and “@betty” when teaching but thanks to
this module it is clear that I’ve been limiting myself. The module has many,
many themes (there are 104 as of this writing) from many different
sources. It ships with a helper script called meta that allows you to say:

$ meta teletubbies 3 # give 3 example variable names using this theme
Noo_Noo
Laa_Laa
Tinky_Winky

$ meta sins 3
laziness
gluttony
pride

June07login_press.qxd:login June 06 Volume 31 5/27/07 10:23 AM Page 59

60 ; L O G I N : V O L . 3 2 , N O . 3

$ meta thunderbirds 3
Brains
Gordon_Tracy
Parker

You’ll never be without interesting example variable names again.

OK, I Lied; It Is All Fun and Games

As a way of ending this month’s column with a smile, let me stick to my
guns and show you three modules that are legitimately of dubious practical
value but are amusing nonetheless.

The first is Acme::Test::Weather. Acme::Test::Weather is meant to be like
the other testing-oriented modules (Test::More, Test::Simple, etc.) I first
wrote about almost precisely a year ago in this column. The difference is
that instead of providing testing primitives that perform comparisons such
as “Is the result of subroutine() eq to this string?” it provides tests such as:

is_cloudy()
isnt_snowing()
eq_fahrenheit()
lt_humidity()

The module allows you to write tests based on the current weather for the
machine running this test. Seriously. To make this happen it first attempts
to look up the IP address’s location using CAIDA::NetGeo::Client. With
this location it calls Weather::Underground to find the current weather for
that location. Why does it do this? The doc says, “Because, you know, it
may be important to your Perl module that it’s raining outside.”

(As a related aside, I have to confess that in one of my classes I show peo-
ple Perl code that behaves a certain way based on the current phase of the
moon. Maybe I need to package this into its own Acme:: module?)

The second of our closing modules will mostly amuse the computer sci-
ence readers. Let me let it speak for itself:

Acme::HaltingProblem - A program to decide whether a given program
halts

I would show you some sample code that uses this module, but the docu-
mentation lists the following bug:

This code does not correctly deal with the case where the machine does
not halt.

And finally, there is Acme::Morse::Audible. Like Acme::Bleach, the first
time you run it it rewrites the script containing your original source code.
In this case the source code becomes a real MIDI file containing the origi-
nal source code: the original source code translated into Morse code, that
is. Once you strip out the leading “use Acme::Morse::Audible;” line any-
thing that can play back MIDI files will let you listen to your Perl code as
it would be rendered in dots and dashes. And yes, if you leave the first line
intact the obfuscated script still runs fine.

At best the idea of translating your programs into audible representations
may inspire some new great ideas (or some nostalgia for the days when lis-
tening to relays could help debug programs). At worst this module’s very
existence tickles me pink. On April Fool’s Day that’s good enough for me.
Take care, and I’ll see you next time.

June07login_press.qxd:login June 06 Volume 31 5/27/07 10:23 AM Page 60

