28

JOHN LLOYD

introducing system

engineering to the
system admin

John Lloyd is a computer systems engineer at MDA, a
Canadian technology company that builds and oper-
ates systems ranging from land-title information to
space robotics. He has been doing system adminis-
tration and system engineering on machines rang-
ing from PDP-11s to SGI Altix for nearly 30 years.

John.Lloyd@MDAcorporation.com

THE METHODS OF SYSTEM ENGINEER-
ing (SE) can help solve some typical system
construction and operation problems.
Using a case study as a demonstration, in
this article you will learn to use SE methods
to build a simple database system.

A System Administrator’s Story

As a system administrator, you are asked to put
together a computer system to provide an Oracle
database for an Internet Web site. The project
leader explains to you that costs have to be low
but the system has to be highly available, with
better than 99.9% uptime. The Oracle software
required by the Web page developers who are pro-
viding active (programmed content) Web pages to
the system’s end users largely dictates the capacity
of the system you need to acquire.

You find some used Sun gear, consisting of an
A1000 SCSI RAID system and an E450 four-way
SPARC computer. The Oracle DBA (database
administrator) is very pleased, since this system
contains twelve 72 GB disks and has four proces-
sors. This seems to be plenty. The project manager
is pleased, since you saved lots of money by buy-
ing used equipment.

Over the next year the computer system goes
through several major and minor crises.

For example, one day a disk in the RAID storage
array fails; you notice the yellow light and replace
the disk with a spare you thoughtfully ordered
with the system. No data is lost. The project man-
ager is happy and publicly congratulates you.

A few months later the software developers phone
you at home complaining that the database server
has stopped functioning during a software
upgrade. After some investigation you discover
one of the Oracle filesystems is full. After half an
hour of careful and patient probing, you discover
the developers have to modify several very large
tables in the database and are doing this one table
at a time. It turns out this is what consumes disk
space—complete copies of the original table are
stored in the Oracle “rollback” space. The soft-
ware upgrade has to be aborted for lack of ade-
quate disk space. Because the half-completed
upgrade process has left the database unusable, it
takes all night and most of the next day to restore
the database, resulting in a full day of downtime.

The next day the project manager gets very angry
when he discovers what had happened the night

;LOGIN: VOL. 32, NO. 2

;LOGIN: APRIL 2007

before. Everyone points fingers at the other groups: The DBA complains
about disk space; the developers complain about the Oracle software
behavior, and you complain about developers not knowing the conse-
quences of their actions. No points for anybody. But you get budget
approval for a disk upgrade.

The third episode revolves around another disk failure. This time one of
the system disks fails. You have thoughtfully implemented software RAID 1
(disk mirroring). But upon replacing the failed disk you discover the sys-
tem will not boot. After several hours of investigation, you discover you've
made a basic error in setting up the system disk mirroring. The fix involves
a complete system-disk replication and a planned one-hour shutdown has
turned into a 12-hour outage. Once more, the project manager is unhappy.

At your annual performance review, the project manager points out this
history. He states that as a result, the system performance was not met,
since the system was down for two days, resulting in only 99.45% uptime
for the year. You respond by acknowledging the system-disk problem, but
you refuse to accept responsibility for the Oracle disk-space issue; it was
not under your control. You point out the success of the RAID disk
replacement. By your accounting, system availability was 99.86% because
the system was only down for 12 hours on a Saturday, and everyone knows
the customers don'’t use it on weekends. That’s “pretty close” to 99.9%,
isn’t it?

System Engineering to the Rescue

System engineering is the systematic application of engineering methods to
identify the issues and requirements, develop and evaluate alternative
architectures and designs, implement and test the selected design, and veri-
ty the correctness of a system implementation.

This is a lengthy definition, and you may well ask, “How do all these activ-
ities help this situation?” The short answer is that SE enables successful
implementation of the features that are important to the customer. For the
example given here, this means identifying and meeting the 99.9% uptime
requirement given all foreseeable uses of the system.

The hardware failures cited in the case study could not have been avoided.
However, the systematic failure to provide disk space could have been pre-
vented by SE processes. System engineering provides the means to design
for and test the system response to identifiable situations, including soft-
ware upgrades.

A Simplified SE Process

SE uses several types of design information, including figures, tables, and
text. By using a specified procedure, they are developed and maintained as
documents. These will require some effort to generate and maintain. The
value of the SE process outweighs the effort required to maintain these
documents.

The general outline of the process is as follows. First, identify the system
to be built, ensuring that interfaces to outside systems are well defined.
Second, define system functionality by writing requirements statements
and casting them in a testable form. Third, design the system by methodi-
cally placing the list of requirements in the design. After assembly and con-
struction, test the system by showing that it meets the stated requirements.

INTRODUCING SYSTEM ENGINEERING TO THE SYSTEM ADMIN

29

30

;LOGIN: VOL. 32, NO. 2

In terms of SE, identifying requirements is the central goal. Providing
clearly defined requirements that are unlikely to change makes designing,
implementing, and acceptance-testing understandable and manageable.
Additionally, a clear and accurate set of requirements for a system provides
stability to the designers, and to the implementers.

System Boundaries

Identifying the system to be built provides the boundaries of the system
and the information flows which the system provides or acts on. System
requirements can then be stated in terms of these flows.

In our case study, the system admin implicitly identified the system as a
computer and Oracle database software. The system admin did not consid-
er the Web server software as part of system admin responsibilities. The
software developers understood the system as Java code running on the
Oracle database supplied by the system admin. They understood the data-
base in abstract terms, as a data storage system.

Each group had a different view of what the complete Web server system
consisted of. Neither fully understood the scope or extent of their views, or
the relationship of their part to the organization’s real goal of operating a
Web site. As a result, the combination of computer and software did not
meet management’s expectations.

By taking the steps to formally list the actual interactions between these
two views of the system, we can define and separate two separate subsys-
tems and the information flows between them. This process provides a way
to clearly identify where the database system begins and ends. It also pro-
vides the basis for defining the expectations for the database (the require-
ments).

The interactions between database software and Web application are famil-
iar to most developers and system admins. These interactions, in addition
to the usual ones required for any computer system (monitoring, backups,
etc.), define the list of interfaces to the database subsystem. By taking this
environment into consideration, these interactions define the scope or the
extent of the database subsystem. In other words, we identify the database
system by defining its interactions with external systems in its environ-
ment.

The database system environment is illustrated in Figure 1, as a context
diagram. In this figure, each interface with an external entity is identified
and the flows of information are shown by the arrows. The intent here is to
show all substantial information flows, while excluding uninteresting
flows, for example, power and cooling, details of user interfaces, and oper-
ating system installations. To supplement this figure, we normally add a
table describing the key types of information exchanged on each interface.
An example is given in Table 1 (facing page).

The list of interfaces and their data flows will be used as the basis for
defining functions and behaviors of the system, also called “requirements.
But first, let’s take a more detailed look at the figure and table.

”

Experienced system designers might have some comments about these
interfaces as I have described them. The database subsystem is responsible
for backups, and opinions may vary on whether the data-model updates
are a software upgrade or an information flow. From the system admin
point of view, they are data items exchanged with the Web developers and
are considered as data.

;LOGIN: APRIL 2007

Interface Item Description
Application Oracle queries SQL statements operating on the set
queries and inserts of application tables
Developer Software updates | Replacement .jar files and .war files
updates comprising the Java application are
supplied by the software developers
Data model Scripts to convert the schema to the next
updates version, and to undo this conversion
Offsite backup | Media Online Oracle backup tapes, in tar format,
tapes are sent offsite by courier
Sysadmin Logs System logs
monitoring
DBA Logs Database alerts and trace logs
monitoring
TABLE 1: EXTERNAL INTERFACES
Sysadmin
monitoring
Application Database Server
Queries subsystem
Offsite backup tapes .
DBA monitoring
Developer
updates
FIGURE 1: CONTEXT DIAGRAM

Here are some simple rules for composing a context diagram:

= Significant information flows, together with directions, are shown.
= Information flows with separate external entities are shown.

= Control flows are excluded.

= Heat, power, light, and space are excluded.

= Software installation, configuration, and management are excluded.

The last rule seems to be broken in my example. In this case, the database
subsystem operates on data, and here the data happens to be considered as
software by another subsystem.

In addition to the diagram, provide a table (see above) identifying and
describing each information flow. The interfaces and flows define the oper-
ational context and the extent and scope of the system. Now any functions
or information can easily be identified as part of this system, or not.

With the context and information flows between the system and significant

externals identified, we can examine functional behavior of the system.

Requirements

With the boundaries of the system identified, we can now address system
requirements. These are a set of statements that clearly state all of the

INTRODUCING SYSTEM ENGINEERING TO THE SYSTEM ADMIN

31

“real” behaviors, functions, and system characteristics; they identify the
pertinent functions and capabilities of the system.

Good requirements do not impose or specify a design. Good requirements
describe the system behavior; they do not describe the internals of the sys-
tem. The goal of requirements analysis is to provide objective descriptions
of the system. Each requirement, therefore, must also be testable; we need
to be able to verify the defined behaviors or attributes. (It is worth noting

that writing testable requirements saves time and trouble later.)

Requirements are the most important and critical element of SE. As the
basis for the system design phase, they must be complete and understand-
able. They form the basis for testing, where the tester must show that each
requirement is met. Requirements also describe characteristics, such as sys-
tem reliability or usability, that have to be built into the system design and
proven by analysis, examination, or testing of the assembled system.
Requirements are also the principal means of communication among devel-
opers, sysadmins, and the system users and owners. They are (or should
be) mutually understood and agreed upon.

What are “good” requirements statements? Here are some guidelines:

= They can be demonstrated, measured, or verified by analysis.
= They do not contain adjectives that are subjective.
= They do not contain “and” or “or” to separate multiple requirements.
= They do not contain design descriptions or prescriptions.
= They may contain constraints such as preferred vendors or technolo-
gies.
Here are a few good examples:

= Shall run Oracle version 10GR2 (this constraint is demonstrable).

= Shall support 120 GB of disk storage (demonstrable).

= Shall perform daily full backups of Oracle data (demonstrable).

= Shall perform daily full backups of operating system (demonstrable).
= Shall support 6 Web logins per second (measurable).

= Shall be available 99.9% of a calendar year (verifiable by analyses).

These examples are clear and concise. Although a software product is spec-
ified, this is more of a constraint on the designer than a design require-
ment, but it is realistic. The sizing statement can be demonstrated by
examining results of a command (no arithmetic is needed). The backup
functions are separated into two statements, to avoid “and.” The availabili-
ty requirement uses calculations based on vendor-supplied failure rates,
and is therefore verifiable by analysis (99.9% of a year is about 8.75 hours
downtime per year).

Some examples of bad requirements statements are:

= Shall provide appropriate backup system (adjective is subjective).

= Shall prevent insecure logins (“insecure logins” undefined).

= Ought to be available 7x24x365 (not a yes/no requirement).

= Cannot allow hackers in (unachievable).

= Has to use RAID1 on all database disks (design imposition).

= Shall use Java for writing the Web app (not applicable to this subsys-
tem).

= Should use disk-to-disk backups for Oracle data (design imposition).

These examples show some possible errors of composition or design speci-
fication. Some use undefined terms, define impossible goals, or include
statements that are not applicable to this particular system.

32 ;LOGIN: VOL. 32, NO. 2

;LOGIN: APRIL 2007

The last example is a classic requirements error. The “obvious” function to
require disk-to-disk backups is stated as a requirement. Fixing this state-
ment requires some detective work to uncover the true purpose: Is the
intended meaning to limit recovery time from backups, or is some other
objective sought? The requirement should be rewritten to specify the actu-
al need (e.g., “A database restore shall take less than 4 hours”).

The benefit of a set of good requirements is simplicity. Good requirements
make it easy to understand the functions and characteristics of a system.
They also make these statements readily verifiable.

One recurring problem that arises when writing requirements is the risk of
missing some “important” requirement. This is a constant issue for SE, and
there are a number of ways to reduce this risk. One way is to establish “use
cases,” as is common in software engineering. These are paper exercises
where the functions, inputs, and outputs of the system are considered for
different scenarios. These descriptions are checked against the list of
requirements. Another method is evaluating the lifecycle of each key data
item or information item. We can identify the birth, life, and death (or per-
manent archival) of each data item and verify that requirements cover
every step.

How many requirements statements are enough? If there are too many, the
system may not be achievable because of conflicting requirements; too few,
and the users have not communicated enough about what is needed. A
short answer is: Enough to be clear on the goals of the system.

System Design

The system designer identifies useful components such as computers, net-
works, and software and connects them in a way that meets the system
objectives. In this example, we have already committed the act of design
by separating the Web site into a database subsystem and a software sub-
system, and connecting them by their data flows. It’s not always that sim-
ple.

The context diagram describes the database subsystem in its environment,
whereas the requirements list identifies the functions and information
processed by the database subsystem. The database design provides com-
ponents to support each information flow in the context diagram and each
function and each characteristic identified in the requirements.

Based on experience, research on vendor guidelines, recommendations of
peers, or pure invention, the designer identifies the components required
to complete the design and composes a figure showing their relationships,
as in Figure 2 (next page). In this figure, boxes are the components, circled
numbers identify internal information flows, and labeled arrows show
flows identified in the context diagram.

This is what is commonly called the design of the system. It shows the
computer parts, backup system, two kinds of storage, and related connec-
tions. It does not show unnecessary detail such as electrical power, system
installation or configuration procedures, cost, etc.

Something very important should accompany this design figure. Each com-
ponent of the design needs to be matched to one or more requirement
statements (see Table 2, next page). This is a very significant (and some-

INTRODUCING SYSTEM ENGINEERING TO THE SYSTEM ADMIN

33

34

;LOGIN: VOL. 32, NO. 2

DB Backup
storage storage

® |®
Sysadmin

Application @ . > monitoring
Queries «—| Oracle Database |« > Solaris/SPARC

computer
@
; Y
y
DBA Developer Offsite backup tapes
monitoring ~ Updates
FIGURE 2: SYSTEM DESIGN
Category | Requirement Allocated Component

Oracle Shall run Oracle 10GR2 | Oracle database

Shall perform daily full | Oracle database, Solaris/SPARC computer,
backups of Oracle DB storage, backup storage

Availability | Shall be available 99.9% | Solaris/SPARC computer, DB storage

TABLE 2: REQUIREMENTS ALLOCATION TO DESIGN

times troublesome) step. Matching components to requirements guarantees
two things:

= Each requirement is covered by at least one component of the design.
= All design components are necessary.

By matching a requirement to one or more components, the designer
ensures that the requirement can be satisfied by the functions of those
components.

If the design contains components not related to official requirements, then
there is something funny going on. Possibly, requirements are missing, the
designer has made a mistake, or something in the process has broken. This
can be a very useful test of the process and a clear quality-assurance check
on both the design and the requirements. Getting to this point (clear
requirements and consistent and clear design) is a major milestone in the
process and has clearly significant benefits for the project.

For the design to be valid and useful, it should follow some rules. First,
the design must match the context diagram. Each data flow in the context
diagram must match the corresponding flow in the design. The design
should maintain a fairly consistent level of abstraction, providing informa-
tion flows between components rather than reflecting physical connectivi-
ty. (This can be a subjective measure, and hard to achieve in some cases.)

As shown in our design, we have identified internal information flows, and
so we should identify what goes on in each flow. Some are very simple. In
the figure, number 4 is a SCSI or Fibre Channel interconnect, whereas
number 1 will reflect all the information flows between a complex database
product and the underlying operating system. You should be able to identi-
fy each element and describe its functions. The flows of information
between each element should be described as well. This combination of (1)
a figure showing relationships between components and (2) information
flows defines the design.

;LOGIN: APRIL 2007

Interface Item Description

1. Oracle-to- Data storage for Filesystems for storing tables

Solaris tablespaces
Control-file Distinct filesystems on separate devices
locations to hold copies of Oracle Control-files
Operating system | Process creation, memory mapping,
interface /O and other standard OS features

2. DB store Disk I/O SCSI-compatible disk storage

3. Backup store | Database backups |SCSI-compatible disk storage

4. Tape interface | System backups SCSI-compatible tape drive

TABLE 3: INTERNAL INTERFACES

Even this figure and accompanying tables, of course, are not enough to
fully characterize the design. Performance and scalability are not described
in this figure; an analysis of system availability is needed, and so on. In
fact, a significant effort is normally made to analyze the characteristics of a
design. If an analysis shows noncompliance to requirements, the designer
will necessarily have to modify the design or even try to renegotiate
requirements.

Readers familiar with software systems design will recognize a pattern
here. Requirement statements are formally linked to each element of the
system. The links are traced out in both directions, and these are thorough-
ly checked.

The design must be proven by assembling the components and by check-
ing each requirement. This is the actual work of constructing the system.

Integration and Testing

Once the design is completed (and this means that the requirements set is
well defined and that results of various design analyses are satisfactory),
the system is assembled and tested.

Most system admins have experience assembling computer systems such as
this one. For this small example, it is fairly straightforward to assemble the
components, install the software, check vendor Web sites for the latest bug
fixes and patches, and complete the patching and configuration of the sys-
tem. Many might object that formal testing of the system is not really
required; they know what they are doing.

The point is that testing applies to the complete system, including interac-
tion with the Web application, not just the database server. Merely testing
the database system does not uncover potential systemic errors. Covering
all identified requirements makes the complete system much more trust-
worthy, because it has been tested. Testing should be applied in a con-
trolled, reproducible process to whatever degree of formality is needed by
the paying customer, even if it is your own organization.

Preparing tests and performing testing provides three benefits:

= [t confirms that requirements are met.
= [t provides reproducible tests for future system-integrity checking.
= [t confirms valid requirements.

The first two points should be clear. The last point requires some explana-
tion.

INTRODUCING SYSTEM ENGINEERING TO THE SYSTEM ADMIN

35

36

;LOGIN: VOL. 32, NO. 2

The SE process as I've described it includes many references to the require-
ments set. This dependency is obvious and essential—meeting require-
ments is the goal. However, a good requirements set has to be valid, in the
sense that the requirements must accurately describe the intent of the cus-
tomer. We all know that customer intentions can change, owing to mar-
ket conditions, technical advances, or simply improved understanding of
the problem being addressed. We can use system testing, or even just the
process of writing system tests, as a way to help discover true requirements
based on customer intentions. The tests need to be approved or reviewed
by the customer: This is their chance to confirm their validity.

Finding the Systemic Problems

Here lies the solution to the two system issues that lay undetected in the
Web services system described in the case study. First, the system-disk
recovery process was simply not tested; therefore no one discovered it was
broken. A formal test with simulated disk failure would have uncovered
the problem and resulted in a revised design.

Second, the process of upgrading the Web application software and imple-
menting a data model change (see Table 1) would also have been tested.
This test might not have uncovered a storage problem unless the disk
usage was measured during the change. It’s unlikely anyone would include
such a measurement in a test procedure, that is, not unless there is anoth-
er, real requirement statement:

Requirement: The system shall support 1 year of online data.

Is this a real requirement? Yes, it is measurable and does not depend on the
application or the particulars of implementation. And it is verifiable by
adding a year’s worth of simulated data to the database and running tests.
A suitable test case (perform a data model change with one year of data)
would have uncovered the second systemic fault before it was discovered
operationally. The operational problem would have been avoided.

Other potential problems can be discovered, such as meeting the Web
login rate (6 per second) when the database contains a year of online data
and database backups are in progress. Systematic test planning can help
uncover this scenario.

Conclusion

We used a case study of a typical database implementation to introduce
systematic review and testing of system requirements. Our systematic
process is called “system engineering” and meets the goal of providing an
understandable, usable process to generate and deploy computer systems
that correctly meet the customer’s defined goals.

There is much more that can be said: I've omitted some key topics from
this description, including the necessity of revising the requirements,
designs, and test plans as new insights are gained. I have not described in
detail how to document interfaces. The politics of uncovering and docu-
menting requirements from sometimes uncooperative customers has not
been described. Also, I have not included a description of document con-
figuration management, which is essential to maintaining control of the SE
process.

The thoughtful reader will recognize that the same methods described here
for designing a database system can be used for each component of the

;LOGIN: APRIL 2007

database system in turn, resulting in a hierarchy of context diagrams,
designs, component context diagrams, component designs, and so on in
greater detail. This is a key benefit of SE; once learned and applied, it can
be used repeatedly over and over throughout large system implementa-
tions.

RESOURCES

The definitive text on SE is Systems Engineering and Analysis (4th ed.) by
B.S. Blanchard and WJ. Fabrycky (Englewood Cliffs, N.J.: Prentice-Hall,
2005). This is not, however, an easy introduction to the topic. It describes
SE for very large systems and includes the application of the SE process to
the production of the systems (factories) as well as the final product and
long-term support of systems in the field. Earlier editions are useful too.

The U.S. Defense Systems Management College’s Systems Engineering
Fundamentals (Fort Belvoir, Virginia: DSMC, 2001) is shorter than Blan-
chard and Fabrycky’s book, but it requires careful reading. It describes SE
in 40 pages (of a total of 200), with the rest of the volume describing man-
agement of the SE processes. It uses more technical (and somewhat differ-
ent) jargon and references some U.S. DoD standards. It is freely available
on the Web.

INCOSE (International Council on Systems Engineering) publishes a sin-
gle-volume handbook, available to members. See www.incose.org.

International standards on SE include ISO 15288, EIA/IS 731, and IEEE
1498. These are often costly to obtain, and a textbook (or three) is more
likely to be useful. Freely available standards include ECSS (www.ecss.nl),
MIL-SPEC 498, and DOD-STD 2167A, although the latter two are more
software-oriented.

INTRODUCING SYSTEM ENGINEERING TO THE SYSTEM ADMIN

37

