
38 ; LOG I N : VOL . 32 , NO. 2

R I K F A R R OW

promises, promises:
an interview with
Mark Burgess
When Rik Farrow is not acting as editor of ;login:, he
is working to improve computer security as a con-
sultant and researcher.

rik@usenix.org

Mark Burgess is professor of network and system
administration at Oslo University College, Norway.
He is the author of Cfengine and many books and
research papers on system administration.

Mark.Burgess@iu.hio.no

R I K : S O L E T ’ S B E G I N AT TH E B E G I N -
ning, shall we? Assume your gentle reader
is clueless in these discussions.What led
you to promise theory?

Mark: Well [laughs], as always, ideas come by a
circuitous route. Promise theory sort of grew in
my mind over a few years from thinking about
everything I was doing: network graph theory,
game theory, host autonomy (as in cfengine), poli-
cy-based management, anomaly detection, fault
analysis, etc., etc. I think I was getting interested
in others’ modal logic approaches to policy and
was at the same time getting depressed that they
seemed to be a complete waste of time. Then, I
kind of have this thing where I challenge myself
to break with convention and say: The hell with
what everyone else is doing; I’ve got to think
again from the beginning! How would I do it?

At the time, I was doing some work on network
ranking in search algorithms (like Google’s Page-
Rank) with two colleagues at Telenor and I was
wondering whether there was a way of using
those ideas for pinpointing problems in computer
networks. It occurred to me that the reason net-
works succeed or fail to make a working system is
all about what the individual nodes do for each
other. So that might lead you to thinking about a
kind of Service Oriented Architecture, but I’m
always trying to look beyond the obvious answer.
It occurred to me (from what I know about events
and anomalies) that what we do or what actually
happens is far too ephemeral to be interesting. It is
not the issue. Rather, it’s the average behavior of
systems that tells you what’s of lasting value about
it. You know, if we design systems by thinking
about mosquito bites we’ll wallow in details that
will mostly average out to nothing. But what if we
could simply describe how individual (i.e.,
autonomous) components behave toward each
other on average, and see how that ends up lead-
ing to a working system? In other words, stop
thinking about the networks as communication,
and start thinking about them as interaction, or
what behaviors the components exhibit toward
one another. That was sort of what got me going.

Rik: And you described the nature of these inter-
actions between components as “promises.” Why
“promises”?

Mark: Yeah, that’s important. We’re trying to get
to a simple summary of how parts in a system
will behave when we put them together, and that
includes both machines and people—human-com-



puter systems, as I like to say. I think we have to
realize that systems don’t always do what we want
them to, and that we sometimes take it for grant-
ed that they should. A promise (if made) is a good
way of summarizing how a component will try to
make its best effort to contribute to a system vol-
untarily. Voluntary cooperation, in turn, is an
important viewpoint (though you might at first
think it’s a bit odd) because it says that whatever
autonomous decisions have been made by the
component, you know either behind the scenes by
its owner or programmed within it, these deci-
sions are going to support this behavior that has
been promised. So a promise captures the essence
of what behavior is advertised and planned for.
Now let’s say a system does not behave the way
we want. This could mean either that it has not
promised to behave in that way (i.e., choice was
involved) or that it has indeed made a promise
but was not able to comply for reasons beyond its
control (i.e., a fault).

Without a promise we can’t tell the difference
between not being willing to cooperate and not
being able to cooperate, that is, design error or a
fault. So we would miss a vital part of the specifi-
cation, something like half a contract. If we have
all necessary promises to guarantee success, the
only reason for failure in a system is an unfore-
seen fault. So we distinguish between what is
promised or “expected” (with inevitable uncer-
tainty) and what is simply “unknown.” I think
this helps us make an important conceptual step
away from believing that we can magically force
components to do their jobs.

Rik: I find myself wondering about systems that
make promises that they cannot fulfill. I don’t see
anything in promises that would prevent a system
from “lying” about its capabilities and thus trick-
ing other systems into choosing to rely on a sys-
tem that will fail.

Mark: That’s true. It’s the way the world really is.
Just as there is nothing to prevent any service
provider or component in a system from lying
about its service delivery. A good example of this
is a power supply we bought recently that is rated
with a certain current delivery that was simply
false. I should be clear: We talk about voluntary
cooperation not because it is necessarily desirable
but because it is the only realistic viewpoint.
Actually, you can’t squeeze blood from a stone, or
force someone to deliver on something without
their voluntary cooperation. At best you might be
able to refuse them something in return, if there is
a trade of some kind.

Take a peering agreement: If you promise to carry
my traffic and then later refuse, I can withdraw
my promise to carry yours. In the case of a power
supply, there is no trade. The power supply is a
“slave” component and if we anthropomorphize,
we have no threat of reprisal if it lies about its
capabilities—we are simply screwed (pardon my
French). Of course, in reality the manufacturer of
the power supply lied about its capabilities, so we
could either withdraw our promise of money to
them or make a threat of litigation (which is a
promise to do something that would have a nega-
tive value to the other party). The promise para-
digm still fits. Promises only help us to manage
this uncertainty by indicating an intention to
behave in a certain way.

Rik: I can see how promises are a realistic way of
representing the relationship between compo-
nents. How do promises fit into configuration
management?

Mark: Configuration management is a service that
essentially makes a number of promises about
how a system will be configured.

Rik: You and Alva Couch had a paper at LISA ’06
that ties promises in with two other concepts: clo-
sures and aspects [1]. Can you explain briefly
how these three concepts fit together?

Mark: Yes, Alva and I don’t get to talk half often
enough, but when we do we click on things
quickly. We were actually walking around
Vancouver at NOMS2006, lapping up some sun-
shine after I had been really sick in my hotel room
for a couple of days. My eye for interesting graffiti
was about to take us into “Death Alley” when a
guy climbed out of a pile of garbage and tried to
sell us drugs (carefully pointing out that we
would probably be murdered if we walked down
said alley). Anyway, this gentleman then showed
us an alternative route through the neighborhood
and gave up only when he finally believed that all
I needed was aspirin. The promise made by
“Death Alley” could be thought of as one of any
number of aspects of Vancouver—crime, life,
death, violence, drugs, etc. An aspect is a very
high-level idea, much higher-level than a promise,
but it is nonetheless a thing we use all the time to
organize our thinking. Paul Anderson points this
out in his SAGE booklet. Think of a Web page, if
you like. Its specification makes certain promises
about text, palette, images, etc. An aspect of these
promises could be “color contrast.” If we want to
increase or decrease the contrast, we might have
to reevaluate promises made about the text, the
images, and the colors in a coordinated way even

; LOGIN: APR I L 2007 PROMISES, PROMISES : AN INTERVIEW WITH MARK BURGESS 39



though they are closed-off and separate categories
that we deal with in quite different ways. Aspects
often cut through several specific issues.

If we think of aspects of configuration manage-
ment such as backup, host naming, and service
delivery, we can express them (compile them
down, if you like) into low-level promises
between specific components. The promises are
much closer to showing you how to implement
these concerns. In fact, cfengine statements are
essentially promises (to fix a system in a particu-
lar way if anything should go bad). Now, closures
are a software idea that represents somehow the
autonomous nature of agents in promise theory.

Alva was thinking about closures even before I
was thinking of promises. It turns out that these
are all very complementary concepts. The agents
interact only through the promises they give and
receive. Otherwise, they are independent. A clo-
sure is essentially an agent that interacts only
through its computing interface, that is, in accor-
dance with the promises it makes to others. Like
an agent, it does what is inside it; it cannot be
forced by an outside influence (for instance, there
can be no global variables or shared memory leak-
ing control information in or out). Closures coop-
erate essentially voluntarily, by virtue of their
internal specifications. They can’t be obliged to
change their behaviors. An agent follows a certain
internal discipline, and a promise is a piece of
glue that binds closures into cooperative patterns
of behavior. These then result in certain “aspects”

of configuration being promised.

Rik: Are closures about voluntary cooperation?

Mark: Again, promises go beyond mere change
management. They say: Forget about obligations,
deontic logic, and all of the barely plausible secu-
rity models policy people talk about, and think
realistically about what happens when you put
closed components into a system. You buy a resis-
tor or a capacitor that makes a certain promise,
usually printed on its side. You can’t force a resis-
tor to be a transistor, so why even try to talk
about obligations? The component does what it
can, or what it “wants,” voluntarily. There are no
genies in the bottles. When we ask ourselves what
promises are required to build a radio, we go
beyond one instance or one application to what
could be. I am a resistor and I promise to resist by
one hundred ohms plus or minus five percent—
not by the number you first thought of! That is an
obvious but crucial philosophical aspect of man-
agement thinking that we seem to have forgotten
in computing.

REFERENCE

[1] “Modeling Next Generation Configuration
Management Tools”: http://www.usenix.org/events/
lisa06/tech/burgess.html.

[2] “Introduction to Promise Theory”:
http://research.iu.hio.no/promises.php.

40 ; LOG I N : VO L . 3 2 , NO . 2




