
D AV I D B L A N K - E D E L M A N

practical Perl tools:
these inodes were
made for walkin’
David N. Blank-Edelman is the Director of Technology
at the Northeastern University College of Computer
and Information Science and the author of the book
Perl for System Administration (O’Reilly, 2000). He has
spent the past 20 years as a system/network admin-
istrator in large multi-platform environments,
including Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He was the
program chair of the LISA ’05 conference and one of
the LISA ’06 Invited Talks co-chairs.

dnb@ccs.neu.edu

S I N C E TH I S I S TH E SY ST EM ADM I N I S -
tration issue of ;login;, I thought I’d take a
break from covertly writing about sysadmin
topics and overtly write about one instead.
Today we’re going to talk a bit about using
Perl to walk filesystems. As filesystems con-
tinue to grow in size and complexity it
helps to know what tools are available to
make navigating these filesystems easier
and more efficient.

(Ohhhh, I remember the good old days back
when our filesystem had just two files: dot and
dot-dot, and we were happy! . . .)

Best not to dilly or dally; we’ve got a lot of walk-
ing to do, so let’s get right to it.

Putting One Foot in Front of the Other
The simplest way to begin to walk filesystems is
to use the directory and file functions that are
built into Perl:

opendir()
readdir()
closedir()
chdir()

Open a directory, read the contents of that directo-
ry, close the directory again, and then change
directories to one of the subdirectories you just
found. Repeat as necessary, most likely via recur-
sion. Can’t get much simpler than that.

This sort of approach appeals to the do-it-yourself
crowd and those people who don’t get enough
recursion in their life (..their life..life..their life...in
their life). In general I don’t find using bare metal
code like this particularly productive. It works
fine for directory walks, where you might do
something like this to find all of the files in a
directory:

my $path = “/Users/dnb”;
opendir my $DH, $path

or die “Can’t open $path: $!”;
my (@files) = grep { -f “$path/$_” } readdir $DH;
closedir $DH

Here’s a quick related aside that may keep you from
banging your head against a wall someday: When
first writing walking code of any sort, many peo-
ple find themselves becoming very frustrated
because their code only partially works. Close
examination under a debugger shows that the

52 ; LOG I N : VO L . 3 2 , NO . 2

opendir(), closedir(), and even the readdir() all appear to be doing the right
thing but for some reason their -f test doesn’t return any results.

In my experience the most common reason for this is that the code they
have written looks like this:

opendir my $DH, $path;
my (@files) = grep { -f } readdir $DH; # probably broken

This certainly looks as though it should work, since readdir() is correctly
returning a list of the contents of $path. Pity we’re not testing items in that
directory, though!

We’re performing the -f test on some (probably nonexistent) name in the
script’s current directory by mistake. If you want to perform a test such as -f
on a file in some other directory, you need to specify that directory, as in
our original code sample (“$path/$_”).

If using the Perl built-in functions isn’t the most productive way to spend
your time, what is? Avid readers of this column know just where I’m
going. Yup, it’s module time.

File::Find
For a fairly long time, the File::Find module was the only game in town.
And it is still a pretty good one. File::Find is shipped with Perl (“in the
core”). It has steadily improved over the years, remaining a decent option
for filesystems walking tasks.

Here’s how it works: File::Find provides one subroutine, find(), which you
call to start a walk from a specific path. Each time File::Find encounters
something (e.g., a file or a directory) on its journey it calls a user-specified
subroutine. This subroutine is responsible for doing all of the selection and
disposition. It is the code that decides which items should be worked on
and what to do with them. Here’s a very simple example to make this a lit-
tle clearer:

use File::Find;

find(\&wanted,’.’);

sub wanted { print “$File::Find::name\n” if (-f $_); }

The first line says to begin the walk from the current directory and to call a
subroutine called “wanted” each time it finds something. The wanted() sub-
routine checks to see whether the item in question is a file and, if it is, the
full path for that name is printed. File::Find makes several useful variables
such as $File::Find::name available for your wanted() subroutine while it is
running, including $File::Find::dir (the current directory at that point in the
walk) and $_ (the name of the item that was just found).

Your wanted() subroutine can be arbitrarily complex. Here’s a contrived
example that attempts a DNS lookup based on the name of every file found
during the walk:

use File::Find;
use Net::DNS;

our $res = Net::DNS::Resolver->new;

find(\&wanted, “/data/suspect_hostnames”);

; LOGIN: APR I L 2007 PRACTICAL PERL TOOLS: THESE INODES WERE MADE FOR WALKIN’ 53

54 ; LOG I N : VO L . 3 2 , NO . 2

sub wanted {
next unless -f $File::Find::name;
my $query = $res->search($_);
print “ok $_” if defined $query;

}

This subroutine prints out the names of the files that successfully return an
answer to the query. Notice that I said that wanted() can be arbitrarily com-
plex, but here’s the rub: It shouldn’t be. This subroutine gets called for
every single item in your filesystem, so it is incumbent upon you to write
code to exit the subroutine as fast as possible. The code in the last example
is a bad example of this, because DNS queries can take a relatively long
time. If you can write a quick test that might lead to an early exit from the
subroutine, by all means do it.

Before we move on to a better way to use File::Find, I do want to mention
that the File::Find way of doing things was so compelling that Guido Flohr
wrote a module that emulates it for use with complex data structures. In
Data::Walk scalars are treated like files and lists and hashes are treated like
directories. With Data::Walk you start a walk() of the data structure and a
user-specified wanted() subroutine is called for each item in that structure.

File::Find::Rule
File::Find by itself makes the walking pretty easy through its simple inter-
face. But this interface can be a bit too simple. It can make you work too
hard to perform common tasks. For example, to collect a list of the files
that are bigger than 2 MB you need to work out your own way to accumu-
late these results between calls to the wanted() subroutine. This means
using global variables (yuck!), a caching/shared memory/persistence mech-
anism (pant, pant, hard work), or creating a closure (“Too much thinking
give Oog a headache!”). To help make standard tasks like this easier there
are a number of File::Find wrapper modules available. My favorite by far is
the File::Find::Rule family of modules. This is the module I reach for most
often for this sort of work (followed as a close second by the technique
we’ll see in the next section).

File::Find::Rule uses an object-oriented calling structure with a procedural
interface also available if you’d prefer. This means you get to type lots of
little arrows (->). To start off slow, here’s the code that returns a list of all
of the items in /var:

use File::Find::Rule;
my @items = File::Find::Rule->in(‘/var’);

We can retrieve just the files or directories by chaining the appropriate
method:

use File::Find::Rule;
my @files = File::Find::Rule->file()->in(‘/var’);
my @dirs = File::Find::Rule->directory()->in(‘/var’);

And that task we mentioned above—all the files above 2 MB in size—
becomes as easy as pie:

use File::Find::Rule;
my @bigfiles = File::Find::Rule->size(‘>2M’)->file()->in(‘/var’);

Much more complex filtering expressions are also possible; see the
File::Find::Rule documentation for more details.

If File::Find::Rule only provided a better interface to File::Find-like opera-
tions that would be enough reason to use it, but there’s even more yummy
goodness inside. I mentioned the File::Find::Rule family of modules before
because File::Find::Rule provides an extension mechanism. Other
File::Find::Rule::* modules can provide new predicates. A sample plug-in
is File::Find::Rule::Permissions, which allows you to write things such as:

use File::Find::Rule::Permissions;
@files = File::Find::Rule::Permissions->file()->

permissions(isReadable =>1, user => ‘dnb’)->in(‘/’);

to determine which files in the filesystem are readable by the user “dnb.”
There are other extension modules that let you easily exclude CVS/SVN
administrative directories (.cvs/.svn) based on image size or MP3 bitrate
and so on. If you want to get really crazy, there’s a module that can detect
every time you’ve used a certain Perl operator in all of the scripts found in
your filesystem:

example from the documentation for File::Find::Rule::PPI
use File::Find::Rule ();
use File::Find::Rule::PPI ();

Find all perl modules that use here-docs (<<EOF)
my $Find = File::Find::Rule->file

->name(‘*.pm’)
->ppi_find_any(‘Token::HereDoc’);

my @heredoc = $Find->in($dir);

The Iterator Gang
File::Find::Rule may be one of my favorite tools for filesystem walking, but
its default mode isn’t always the best choice. For situations where you are
dealing with a huge number of items, iterator-based modules can often
offer a far better approach. (Note that File::Find::Rule also offers iterators.)

Iterators are well championed in the Perl community by Mark-Jason
Dominus. The best exposition on the topic I have seen is in his excellent
book Higher-Order Perl. In this book he says:

An iterator is an object interface to a list.

The object’s member data consists of the list and some state informa-
tion marking a “current” position in the list. The iterator supports
one method, which we will call NEXTVAL. The NEXTVAL method
returns the list element at the current position and updates the cur-
rent position so that, the next time NEXTVAL is called, the next list
element will be returned.

If you’ve used a module where you’ve called a next() method to get the next
item back from some operation, for example an LDAP search, you’ve
already dealt with iterators. In his book Dominus details a number of rea-
sons why iterators are cool (and even shows you how to turn recursive
code into iterator-based code). For our purposes iterator’s most compelling
argument comes into play when dealing with a huge filesystem. If you
need to operate on the list off all of the files in a multi-terabyte filesystem,
you don’t want to use a module that will try to fill up all of your machine’s
memory with a massive list of names. An iterator-based module will let
you work on that list one element at a time without having to store the
whole thing at once. Clearly, this is a big win.

There are a number of Perl modules for filesystem walking that fit into this
category; these include Iterator::IO, Find::File::Iterator, File::Walker,

; LOGIN: APR I L 2007 PRACTICAL PERL TOOLS: THESE INODES WERE MADE FOR WALKIN’ 55

56 ; LOG I N : VO L . 3 2 , NO . 2

Path::Class::Iterator, and File::Next. In the interests of time and space we’ll
only look at the last one.

File::Next is interesting because it describes itself as “lightweight, taint-
safe . . . and has no non-core prerequisites” and also because of a new tool
that makes use of it. We’ll mention that tool in a second, but here’s how
File::Next gets used:

example from the Find::Next documentation
use File::Next;
my $iter = File::Next->files(‘/tmp’);

while (my $file = $iter->()) {
print $file, “\n”;

}

Simple, no? To make the iterator do more complex filtering, more parame-
ters can be passed to the files() method. There is a similar dirs() method
(although no methods are available to return special file types such as fifos).

It is possible to do some pretty powerful stuff with this module. The mod-
ule’s author has built a utility called Ack based on it. Ack (or App::Ack if
you want to install it from CPAN) is a souped-up grep-like program that
knows how to search filesystems in a more intelligent fashion. It knows to
ignore certain files by default (e.g., backup files and core dumps) and can
be told to search only certain types of files. Ack help types shows:

- -[no]asm .s .S
- -[no]binary Binary files, as defined by Perl’s -B op (default: off)
- -[no]cc .c .h .xs
- -[no]cpp .cpp .m .h .C .H
- -[no]csharp .cs
- -[no]css .css
- -[no]elisp .el
- -[no]haskell .hs .lhs
- -[no]html .htm .html .shtml
- -[no]java .java
- -[no]js .js
- -[no]lisp .lisp
- -[no]mason .mas
- -[no]ocaml .ml .mli
- -[no]parrot .pir .pasm .pmc .ops .pod .pg .tg
- -[no]perl .pl .pm .pod .tt .ttml .t
- -[no]php .php .phpt
- -[no]python .py
- -[no]ruby .rb .rhtml .rjs
- -[no]scheme .scm
--[no]shell sh .bash .csh .ksh .zsh
- -[no]sql .sql .ctl
- -[no]tcl .tcl
- -[no]tex .tex .cls .sty
- -[no]tt .tt .tt2
- -[no]vim .vim
- -[no]xml .xml .dtd .xslt
- -[no]yaml .yaml .yml

Ack offers a number of handy features such as color highlighting and full
use of Perl regular expressions in addition to this filetype recognition.

Now that you’ve seen three approaches to filesystem walking and an appli-
cation built on one of those approaches, I think it is time for you to hit the
filesystem and start walkin’. Take care, and I’ll see you next time.

