14

JIM SANGWINE

3D Web
contenders

Jim Sangwine started his career as a lecturer
on the 3D animation degree course at
Portsmouth University in England in 2002,
but by 2004 he had developed an interest
in programming and the Web that drew
him away from animation and into full-
time development. In 2007 Jim left the UK
and joined Competa IT in the Netherlands
as a platform-agnostic Web application
developer working primarily with PHP, C#,
and ActionScript. With the support of his
colleagues at Competa and funding from
NLNET, Jim is soon to begin work on a Java-
Script physics library for use with WebGL.

Jjim@competa.com

3D INTERNET IS FINALLY MOVING OUT
of the realm of film and fantasy. We find
ourselves at a critical crossroads in the
development of this new dimension to our
online world. Although the Web is funda-
mentally standards-based, the reality for
developers is that the main browsers adopt
and implement standards inconsistently,
to varying degrees, and at varying speeds.
The situation is exacerbated by vendors of
plug-ins vying for market share, and there
are already a number of contenders for the
3D content crown. | have looked at what |
believe are the three strongest and have run
some benchmarks to compare their perfor-
mance.

The Web Is a Battleground

The defining aspect of the Web development
landscape has almost always been (and will, in all
probability, always be) the browser wars. While a
desktop application developer might have to target
a particular platform based on his or her audience,
with the possible option of making ports later on,
the conceptual platform for Web application devel-
opers, and the target audience for our clients, is not
educational establishments running UNIX or gam-
ers running Windows 7, but, rather, “the Internet.”
Our OS is the browser, and it is usually our job to
make sure that our application works for as close
to 100% of our potential users as possible. This
problem is alleviated to some extent by the exis-
tence of standards and common languages that all
browsers should support (HTML, CSS, JavaScript),
but despite (or perhaps because of) the efforts to
standardize, the nature of the browser wars means
that developers have to put more work, not less,
into accessibility and legacy support each year.

The root of the problem is that the update cycle
for Web standards and specifications is often very
short. The first publicly available description of
HTML was seen online in late 1991 and described
only 20 elements, of which 13 still existed in

the HTML4 specifications published in Decem-
ber 1997. Since 1991 there have been, including
XHTML, seven official published updates to the
specifications, and HTML5, including XHTMLS5, is
currently in working draft. The first W3C recom-
mendation for CSS was published in December

;LOGIN: VOL. 35, NO. 3

1996, CSS level 2 was published as a recommendation less than 18 months
later, in May 1998, and the first public draft of CSS level 3 was released in
April 2000. CSS level 3 is still in development. The standardization model
for JavaScript, ECMAScript, has had three published versions since No-
vember 1996, but JavaScript is an interpreted language and each of the four
major layout engines that are used in the majority of modern browsers offers
wildly differing levels of support for the various specifications (see Figure 1)

(11.

ECMAScript version support

Trident Gecko WebKit Presto
Name of ECMAScript Engine JScript Spidermonkey/TraceMonkey Ja‘”’s""péi‘i’s:feq“'m”:'“h Linear B/Futhark/Carakan
ECMAScript Edition 3 Yes 0.6 Yes 1.0
JavaScript 1.5 extensions 0.6 Yes 1.0
JavaScript 1.6 extensions 18 Partial
(excluding E4X)
JavaScript 1.7 extensions Partial

JavaScript 1.8 extensions

JavaScript 1.8.1 extensions

JScript .NET extensions

ActionScript extensions

E4X

;LOGIN: JUNE 2010

FIGURE 1: COMPARISON OF LAYOUT ENGINES (ECMASCRIPT)

This enormous and rapid development in the definition of Web content has
led to an explosion of browser versions. There are five families of browsers
with significant share in the market, according to the statistics maintained
by w3schools, in descending order of usage as of February 2010: Firefox
(46.2%), Internet Explorer (34.9%), Chrome (12.3%), Safari (3.7%), and
Opera (2.2%). If you look into the browser versions these stats include, you
will find that we are talking about three versions of Firefox, three versions of
Internet Explorer, three versions of Chrome, two versions of Safari, and two
versions of Opera, for a staggering thirteen distinct variants currently in use
[2].

The Problem of Choice

No study is possible on the battlefield.
—Ferdinand Foch

It is in this rapid introduction of new browser versions coupled with an
apparent reluctance to upgrade on the part of the user base that we find the
real barrier to the adoption and support of new standards by commercial
developers. The oldest significantly used version of Firefox (3.0-5.6% usage)
was released almost two years ago, but much worse is Internet Explorer 6,
which was released in August 2001 and yet still represents 8.9% of our po-
tential users. Eight and a half years is almost half the lifespan of HTML and
the browser-based Web as we know it today, yet developers the world over
are still spending time, effort, and money on supporting this ancient relic.
Worse than that, they are often forced to eschew new techniques to main-
tain legacy support, at the same time restricting the progress of the Internet
and prolonging the lifespan of IE 6.

3D WEB CONTENDERS 15

16

The Browser-Agnostic Alternative

We can love an honest rogue, but what is more offensive than a false saint?
—]Jessamyn West

Perhaps the most obvious solution to the problem of finding a way to deliver
rich, technologically advanced content to users without hitting problems
with browser compatibility was always going to be via the use of plug-ins.
November 1994 saw the specification of VRML (originally Virtual Reality
Modeling Language), a markup standard for the definition of 3D objects, the
description of surface properties (shininess, transparency, color, etc.) and
the ability to invoke URLs in response to clicks on scene elements. Browser
integration was by way of third-party plug-ins, and, unfortunately, was fairly
inconsistent. This fragmented support for the standard across the various
browsers was likely a big factor in VRMLs limited adoption by developers.

In 1996 the first version of Flash was released. Initially called FutureSplash
Animator, this application was bought and rebranded as Macromedia Flash
in the same year and acquired and rebranded as Adobe Flash in 2007.
ActionScript, the object-oriented scripting language of Flash, is based on
the ECMAScript standards and so is syntactically very similar to JavaScript.
Basic scripting was introduced in version 2 of Flash with a few simple
timeline navigation commands (called Actions) that could be embedded

in frames of movies, and version 5 implemented the first iteration of Ac-
tionScript. Flash deserves special mention here because it has achieved far
greater penetration than any other plug-in or even any one browser family.
Adobe claims that as of December 2009, 98.9% of users in what they call
“Mature Markets” (US, Canada, UK, Germany, France, Japan, Australia, New
Zealand) are running at least Flash Player 9 and 94.7% are running the lat-
est version (Flash Player 10). Their “Emerging Market” figures (China, South
Korea, Russia, India, Taiwan) are almost as impressive, claiming 98% for at
least version 9 and 92.7% for version 10 [3].

The fact is that the Flash Player plug-in is maintained by one organiza-

tion, and so content is rendered extremely consistently regardless of which
browser is used to view it, which makes it a very appealing alternative to
other plug-ins and even to JavaScript and AJAX approaches to rich content
authoring. Flash was never intended as a 3D platform (although Adobe had
started adding rudimentary support for 3D effects with version 10), but
there are now a number of extremely powerful ActionScript 3 libraries avail-
able, including, most notably, and considered by many to be the current de
facto standard for 3D online, the open source Papervision3D.

Papervision3D has already been used for a large number of projects, includ-
ing some very high-profile integrations with the ARToolkit—for example,
the GE Smart Grid Augmented Reality app [4]—and has proven itself as a
workable solution.

There are many who feel that the existence of plug-ins, and especially Flash,
is detracting from the efforts of (some) vendors to move towards the ideal of
an open Web through the introduction of, and adherence to, comprehensive
specifications for the native support of rich content such as video and 3D
directly in browsers.

Another frequent criticism of Flash and other plug-ins is that they live inde-
pendently of the page. They are not subject to the browser back and forward
buttons, their state cannot be bookmarked in the browser, they don't obey
changes to the text size browser settings, they don't appear in page prints,
and they do not expose their content to search engines. It is often argued
that these are usability issues, and that the use of discrete applications that
operate outside of the page breaks the whole concept of the Web.

;LOGIN: VOL. 35, NO. 3

;LOGIN: JUNE 2010

In addition, plug-ins can represent a security risk, since they do not fit into
the security model of browsers. The popularity, bugginess, and implied ac-
cess to the Internet of browser plug-ins makes them ideal targets.

The Rewards of Rivalry

Although personally I am quite content with existing explosives, I feel we
must not stand in the path of improvement.
—Sir Winston Churchill, August 30, 1941

It can be (and frequently has been) argued that conflict and competition are
great catalysts for progress. Just as a world war can stimulate breakthroughs
in science and technology, the browser wars have also acted to push for-
ward development. JavaScript has become faster and more powerful, CSS

is supported fairly well by the majority of modern browsers, and measures
are being taken to improve security across the board. The frustrations faced
by developers in trying to keep up with the hacks on top of hacks that are
required to maintain consistent rendering for their users are, in the opinion
of some, trivial compared to those that would arise from a world without
browser competition.

This recently started to hold true for developments in 3D when both Mo-
zilla and Google began work on 3D solutions. Mozilla partnered with the
Khronos Group (the organization behind OpenGL) to produce a compo-
nent called Canvas 3D that exposes the OpenGL ES 2.0 APIs to JavaScript,
and Google is working on their O3D plug-in which accepts JavaScript calls
through their own proprietary API and uses either OpenGL or Direct3D
for rendering. Both projects were intended to be considered for adoption
as the basis of an open Web standard for 3D, but it is the efforts of Mozilla
and Khronos that have been taken forward for development into a product
dubbed WebGL. The WebGL Working Group’s members include Apple,
Mozilla, Opera, and Google, although Google is still continuing work on
O3D.

There is, understandably, a lot of discussion about the relative benefits (and
disadvantages) of O3D and WebGL. O3D is currently the more mature tech-
nology, and many are electing to sit on the fence awaiting a stable produc-
tion release of WebGL.

Google’s Gregg Tavares posted a message on the 03d-discuss group, stating
that they (Google) “have every interest in seeing both WebGL and O3D suc-
ceed,” but he also voiced an opinion that JavaScript is just too slow to match
the potential of O3D [5]. This is mainly because WebGL relies entirely on
JavaScript to manipulate the scene, including transforms, culling, sorting,
and animation, with only the actual OpenGL calls hardware-accelerated.

Gregg also mentioned that OpenGL ES 2.0 (the API exposed via WebGL) is
not supported by “lots of common hardware.”

In the same thread Henry Bridge (also from Google) reiterated that they are
working on both projects (the two are on the same team). He also said that it
makes sense to “standardize GL for]JS” but justified continued development
of O3D by saying that the gap in performance makes the two technologies
appropriate for different situations.

The Facts

Prompted by the comments from Google regarding the potential perfor-
mance problems inherent in the WebGL model, I decided to try to quickly
test the real-world practicality of the three systems.

3D WEB CONTENDERS 17

I started by doing a direct comparison between the latest raft of JavaScript
engines and ActionScript in FlashPlayer 10. I ported five of the routines
from Apple’s SunSpider [6] JavaScript benchmarking application to Action-
Script and ran them on a 2.53GHz Intel Core 2 Duo MacBook Pro with
4GB of DDR3 RAM. I experienced a 10+% variance in test times in Flash
Player, so I set each test to run 10 times and calculated the mean in order
to stabilize the results. JavaScript tests were much more consistent, so I ran
those only five times each. The routines I ported were 3D Cube, 3D Morph,
Cordic Math, Partial Sums Math, and Spectral Norm Math (see Figure 2).

The browsers [used were the latest nightly builds of WebKit (Safari), Mine-
field (Firefox), and Chromium (Chrome), so as to represent the current state
of JavaScript engine performance. I did not include Internet Explorer in the
tests, partially because native versions for my hardware do not exist and
testing in a VM would skew the results, but also because WebGL is cur-
rently not supported by this family of browsers, making the comparison, at
least for now, irrelevant to my investigation.

B Javascript M Actionscript 3
Safari: Webkit build 4.04 (6531.21.10, r55610)

3D Cube

3D Morph
Cordic Math
Partial Sums
Spectral Norm

88 110

Firefox: Minefield build 3.7a3pre

3D Cube

3D Morph
Cordic Math
Partial Sums
Spectral Norm

66 a8 110

Google Chrome: Chromium build 5.0.348.0 (40867)

3D Cube

3D Morph
Cordic Math
Partial Sums
Spectral Norm

0 22 44 66 88 110

FIGURE 2: THESE CHARTS COMPARE THE RESULTS OF 5 SUNSPIDER
BENCHMARK TESTS RUN IN JAVASCRIPT AND ACTIONSCRIPT ON EACH
OF THREE PLATFORMS, WITH TIME MEASURED IN MILLISECONDS.

As one would expect, the performance of FlashPlayer was extremely consis-
tent across all browsers in all tests. There was some variance in JavaScript
performance, particularly in the case of Firefox, which came out worst, but
overall it is very clear that JavaScript is considerably faster than ActionScript

18 ;LOGIN: VOL. 35, NO. 3

;LOGIN: JUNE 2010

at performing these kinds of calculations. This result was hardly surprising
to me, considering the extra overhead involved in running the FlashPlayer. It
did, however, suggest that WebGL might indeed be a very strong alternative,
at least to what many consider to be the current king of Web 3D solutions,
Papervision3D and Flash.

My next test was very crude, and certainly not a comprehensive or even
particularly fair comparison, due to the massive differences between the
systems, but I think it gives some indication of the usefulness of each, par-
ticularly for the kind of undemanding use that the majority of Web develop-
ers will put them to. I created three simple projects in ActionScript, WebGL,
and O3D, each containing only three elements: a simply shaded sphere, a
light, and a camera. I then animated the spheres, rotating them around their
Y axis, and experimented with increasing mesh densities to get a very rough
feel for the kind of polygon load each technology could handle. The results
were pretty interesting.

I only managed to complete all three tests in Minefield; I couldn’t get O3D
running in WebKit, and neither WebGL nor O3D ran in my version of
Chromium. The ActionScript results were again extremely consistent across
the three browsers, but WebGLs JavaScript scene processing completed 5
seconds quicker in WebKit than in Minefield, with no noticeable difference
in frame rate.

My results in Minefield were as follows:

= ActionScript dropped to 4 frames per second with a sphere of 20,000 tri-
angles and took 2 seconds to load.

= The O3D plug-in couldn’t handle a triangle count much greater than
150,000 before exiting with the message “ERROR: The maximum number
of elements in a buffer is 1048575.” However, a consistent frame rate of 60
fps was maintained with no drop at all up to this limit, and the scene took
only 2 seconds to process. It turns out that since some hardware can only
handle a maximum of 1048575 vertices per object, the O3D team decided
to impose that as a standard limit to ensure the portability of applications.
So I ran another test, this time using 10 spheres for a total triangle count of
1,512,500. O3D managed to maintain a frame rate of 15 fps but the scene
took 51 seconds to load.

= The real surprise was the WebGL solution, which managed an extremely
impressive 15 frames per second with a triangle count of 6,480,000 in a
single sphere. The scene took a fairly acceptable 15 seconds to process (and
only 10 in WebKit), going a long way towards allaying my fears as to the
practicality of handling fairly complex scenes in JavaScript.

Where Do We Go from Here?

In my opinion there are a number of points that need to be considered when
choosing among the three solutions I have discussed.

Firstly, there is the question of accessibility. For any technology to succeed
on the Web, it must work for the vast majority of users, especially if it is

to be considered for serious commercial projects. In this respect, Flash has
the obvious advantage as a mature technology that has been around for

a very long time in Internet terms and that has achieved (at least accord-

ing to Adobe) almost total penetration. WebGL, despite still being in beta
phase, claims to be supported by most of the major browsers, but the lack of
Internet Explorer support will undoubtedly be a deal-breaker in the eyes of
many professional developers. Unfortunately, Microsoft has hinted that they
have no intention of supporting WebGL in the upcoming Internet Explorer

3D WEB CONTENDERS 19

20

9. In contrast, O3D claims support for all the major browsers (although my
experience did not seem to confirm this), IE included. Also, O3D supports
a greater range of hardware than WebGL. However, O3D is just another
plug-in, and unless it gets inclusion in the off-the-shelf browser versions
like WebGL, it will be an uphill struggle to achieve the kind of penetration
Adobe Flash claims.

Another very important consideration is ease of use. The Web is a different
environment from the desktop application world, requiring a different set of
skills, and Web developers in general are not likely to have experience with
3D animation and physics or shader programming. If 3D is to be adopted
for commercial Web projects, it will have to prove itself to be both stable
and quick to develop. Agile development has become something of a mantra
in the Web application world, and there will likely be strong resistance in
commercial projects to any technology that represents a significant cost in
training and time. Again, Flash stands out here, thanks to the Papervision3D
libraries with which it is incredibly easy to get something up and working
with remarkably little code. There is already a vibrant community, and the
number of online examples and tutorials is growing. O3D is, out of the box,
easier to pick up than WebGL, but still daunting to the uninitiated. How-
ever, | see this as a temporary problem, and certainly not a game-winning
factor. There are already libraries popping up that encapsulate and automate
common tasks in easy-to-implement frameworks, even for the as yet unre-
leased WebGL. Over time, I believe that the barrier to entry will lower, and
for those who wish to, there will still be the option to dive into OpenGL
coding.

This leads nicely into the third criterion: power. Here, O3D claims to have
the edge over WebGL, and certainly over Flash. As I said earlier, my mesh
load experiment was very crude and did nothing to highlight or test specific
features of any of the technologies, but to my mind it seems to demonstrate
that JavaScript is already more than capable of shifting around some serious
numbers at a speed that will allow developers to do much more than is cur-
rently possible with Flash and Papervision3D. Perhaps it is not yet possible
to produce the next Quake Arena title using only JavaScript and WebGL,
but I personally doubt whether that is an appropriate use of the technology
right now. I feel that the Web needs to get used to 3D, and that it will be
quite some time before developers and users figure out how best to incorpo-
rate it into our online world. JavaScript has already increased performance
incredibly, and if it becomes popular, WebGL might just be the motivation
browser vendors need to invest further in improving their engines and in
standardizing their feature support.

Which brings me to my final point: What is better for the Web? Here, I
think there can only be one answer: WebGL. While competition can stimu-
late creativity and progress, I feel that the current chaos of browsers that
refuse to die and reinventions of existing technology by plug-in developers
are only serving to hold back the progress of the Web. I am almost as pas-
sionate about 3D as I am about the Web, and I really want the two to come
together. I fear that the plug-in wars that are already beginning will delay
the integration of 3D by making it impossible for anything other than Flash
to be implemented in applications where reaching a large audience is a criti-
cal factor (as it is in the vast majority of projects). Therefore, having a tech-
nology that is available to everyone straight from the browser, and whose
implementation is controlled by means of industry standards, perhaps even
as part of the HTML5 spec, just has to be the best way forward in my view.
There might be better options in terms of power or capabilities, but I feel
that is a less important factor in the survival of this fledgling relationship.

;LOGIN: VOL. 35, NO. 3

;LOGIN: JUNE 2010

REFERENCES

[1] Wikipedia, “Comparison of Layout Engines (ECMAScript)™:
http://en.wikipedia.org/wiki/Comparison_of layout_engines (ECMAScript).

[2] W3Schools, “Web Statistics and Trends—Browser Statistics Month by
Month™: http://www.w3schools.com/browsers/browsers_stats.asg.

[3] Adobe, “Flash Player Version Penetration”: http:/www.adobe.com/|
pbroducts/player census/flashplayer/version penetration.html.

[4] GE, Smart Grid Augmented Reality: http:/ge.ecomagination.com/
bmarterid/?2c_id=Hufl#/augmented_reality.

[5] http:/groups.coogle.com/group/o3d-discuss/browse thread/
thread/7bfa3lefcc03b5tq.

[6] hitp:// www2 Webkit.org/perl/sunspider-0.9/sunspider.htm].

HELLO EVERYONE! opus.swf load failure
THIS MONTH, ILLIAD OFFERS
YOU HIS GREATEST OPUS, A
SUBTLY BRILLIANT PIECE

ON TECHNOLOGY IN
SOCIETY, PRESENTED IN
THE WONDROUS COLOURS
OF ADOBE FLASH ON LINUX!

PLEASE ENJOY
THE NEXT
_THREE FRAMES!

=

Userw :

COPYRIGHT©2008 J.D. "llliad" Frazer HTTP://WWW.USERFRIENDLY.ORG,

by].D “Illiad” Frazer

opus.swf load failure

opus.swf load failure WASN'T THAT JUST SUBLIME?
WE HOPE YOU ENJOYED
THIS ONE-TIME PRESENT-
ATION OF ILLIAD'S CROWNING

I am Windows Vista and |
approve this message.

3D WEB CONTENDERS 21

http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(ECMAScript
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.adobe.com/products/player_census/flashplayer/version_penetration.html
http://www.adobe.com/products/player_census/flashplayer/version_penetration.html
http://ge.ecomagination.com/smartgrid/?c_id=Huff#/augmented_reality
http://ge.ecomagination.com/smartgrid/?c_id=Huff#/augmented_reality
http://groups.google.com/group/o3d-discuss/browse_thread/thread/7bfa31efcc03b5f6
http://groups.google.com/group/o3d-discuss/browse_thread/thread/7bfa31efcc03b5f6
http://www2.webkit.org/perf/sunspider-0.9/sunspider.html

