
22	 ; LO G I N :  VO L .  35,  N O.  3   

A LV A  L .  C O U C H

programming with 
technological ritual 
and alchemy
Alva Couch is an associate professor of com-
puter science at Tufts University, where he 
and his students study the theory and prac-
tice of network and system administration. 
He served as program chair of LISA ’02 and 
was a recipient of the 2003 SAGE Outstand-
ing Achievement Award for contributions 
to the theory of system administration. He 
currently serves as Secretary of the USENIX 
Board of Directors.

couch@cs.tufts.edu

I  H AV E  TA U G H T  P R O G R A M M I N G - 
intensive courses to college students for 
over 20 years, and I cannot help but notice 
that the nature of programming has dras-
tically changed in recent years. I teach a 
generation of students unfettered by my 
compulsion to understand and, as a substi-
tute, fettered by their own compulsion to 
do and experience. Unlike the simple lan-
guages I employed to learn programming, 
my students employ complex frameworks, 
exploit primitive crowdsourcing to come up 
with solutions, and engage in a shamanis-
tic ritual of dance and pattern to produce 
software that works, but whose complete 
function they do not and cannot fully 
understand. So? As they might say, “What’s 
wrong with that?”

Technological Shamanism

I call the practice of creating software systems from 
ritual technological shamanism. Programming via 
socially derived ritual makes a surprising amount 
of sense and is often productive. But to understand 
its nature, we need to carefully draw some impor-
tant distinctions between the concepts of “pattern,” 
“example,” and “ritual.”

A design pattern is a proven and reusable approach 
to solving a specific kind of programming problem 
[1]. It is called a “pattern” because it specifies the 
nature of a programming solution without the de-
tails. The original description of patterns expressed 
a pattern as an object-oriented program that oper-
ates on objects that implement specified interfaces. 
These objects represent details the programmer 
must supply. For example, a “sorting” pattern 
works on objects that implement a comparison 
interface. One uses a pattern by implementing the 
interfaces it requires.

More recently, “design patterns” have acquired a 
general popular meaning outside the strictures of 
object-oriented programming, as reusable program 
fragments with some details missing, in which the 
method whereby a programmer fills in details is 
well documented. A pattern is a code fragment that 
has been proven to work through widespread ap-
plication, and where its applicability, proven uses, 
and limits are carefully documented [2]. There 
are several Internet repositories in which one can 
search for patterns to solve various problems.



; LO G I N :  J U N E 201 0	 PRO G R A M M I N G WITH TECH N O LO G I C A L RITUA L A N D A LCH EMY	 23

Patterns are a powerful way of archiving programming knowledge in an ac-
cessible form. One key part of a pattern—independent of the multiple ways 
that one can be described—is a statement of its limits, i.e., “how far you can 
stretch it without breaking it.” Applying a pattern—in principle—substitutes 
for having the knowledge to create it. Using patterns creates code that is, 
in many cases, better than code written from scratch and based upon full 
knowledge of system function.

However, the contemporary programmer is not always fortunate enough to 
have true design patterns in hand. Documenting a pattern is a labor-inten-
sive task. Thus, programmers turn to Internet sources containing “examples” 
that substitute for patterns, in the sense that the programmer can twist an 
example to accomplish a goal and/or combine examples toward a new pur-
pose. But examples are not patterns. There is no documentation of what can 
be changed. There is no documentation as to applicability, scope, or limits; 
there is no claim of broad applicability. There is not even the implicit claim 
that an example has been rigorously tested.

But an example that has proven useful in a broad variety of contexts—even 
in a limited way—is not quite an example anymore. It is not yet a pattern 
and lacks many kinds of documentation. But it is a “ritual” that “usually 
works.” There is some value in distinguishing between “examples,” as un-
tried, versus “rituals,” as partly validated.

One might compare patterns, examples, and rituals with pharmaceuticals, 
folk medicines, and folk remedies. A pharmaceutical—like a pattern—has 
well-documented effects. A folk medicine, like a programming example, 
might create some effects when, e.g., made into tea. A folk remedy—like 
a programming ritual—is contrived from a folk medicine through some 
experience of success, but without complete understanding of its effects. In other 
words, a programming “ritual” is somewhat like a new drug without FDA 
approval. A ritual “just works,” for some partly understood reason.

One weakness of using rituals is that finding new rituals requires some mix 
of guesswork, experimentation, and/or deep knowledge. Modifications to 
existing rituals—however minor—are not guaranteed to work, any more 
than modifications of gourmet recipes are; only the master chef knows what 
can be substituted.

As an example of this, I assigned my students to write a simple document 
search program in Hadoop, thinking that this was a straightforward pro-
gram. Not! We got caught in the netherworld between Hadoop 0.19 and 
Hadoop 0.20, in which the syntax changed enough in 0.20 to invalidate all 
of the 0.19 tutorials. The tutorial examples said nothing about how to propa-
gate the search terms to the mapper processes. Worse, the only candidate 
variable that we knew enables that kind of propagation had a type that was 
marked as deprecated! Through some educated guesswork and experimen-
tation, we found out how to do it, though others before us did not fare as 
well,and we found one Internet lament that text search—which Hadoop was 
designed to do well—was impractical in Hadoop!

How did we succeed? Well, it is difficult to admit it, but we succeeded by 
locating a shamanistic ritual with a closely related outcome, searched the 
Web for related rituals, and then guessed what to do and verified the guess 
through experimentation, thus creating our own personalized ritual. I call this 
“ritual” and not “pattern,” because in the process of making the program 
work, we did not obtain a comprehensive idea of why it works, or its limits!

A little play with modern Web frameworks such as Ruby on Rails, Sym- 
fony, and Cake will demonstrate why modern programmers think this  



24	 ; LO G I N :  VO L .  35,  N O.  3

way: one cannot deviate from predefined rituals without courting disaster 
and/or inconceivable behavior. Frameworks have reached the complexity 
point where documenting their complete function to a programmer is im-
practical, or perhaps I should call it “unempowering.” The total workings of 
modern programming frameworks are not that useful to know for someone 
using them. So we resort to shamanism and employ rituals that the creators 
of the frameworks kindly provide for us, or we guess and, from experimen-
tation, create our own rituals to taste.

Engaging in ritual rather than understanding is not just exhibited by pro-
grammers. System administrators often crowdsource their configurations of 
software, for desktops or servers, based upon what rituals are found to work 
by others. The job of the system administrator is not to understand but, 
rather, just to repair the problem. Time pressure often limits personal explo-
ration, so that successful repairs by others are important to know. Often, the 
quickest approach to troubleshooting is to mine “rituals that work” from the 
Internet. The mailing lists are full of these simple—but generally effective—
uses of crowdsourcing.

From Shamanism to Alchemy

By this time, the reader may think I am advocating a return to barbarism, 
throwing away the knowledge of the past. I am instead pointing out that 
we are already barbaric, in the sense that our technology has already vastly 
surpassed our understanding. How empowering is it, for example, to take 
apart a cell phone? The physical structure of a cell phone is not empowering 
to someone looking to understand its function, which is mostly hidden.

And the barbarians are winning, because they can produce programs faster 
than the civilized programmers!

The modern technological shaman, like the primitive shaman, trusts his or 
her senses and engages in a kind of science. The difference between primi-
tive shamanism and technological shamanism lies in what the shaman’s 
senses include. The technological shaman has the observational powers of 
the Internet-connected world available and can crowdsource a solution to a 
mystifying problem simply by querying the proper mailing lists. The appro-
priate response to “Doctor, it hurts if I do this” is usually “Don’t do that; do 
this”; a non-working ritual is countered with a working ritual, but without a 
satisfying explanation of why one ritual does not work while the other does.

Like a folk remedy, a modern ritual gains validity through direct observation 
of when it does and doesn’t work. Thus its validity grows with application 
and observation, including observation of what requirements it does not 
meet. One severe downside is that there is no such thing as a “secure ritual”; 
a reasonably complete security analysis would transform it into a pattern!

Crowdsourced solutions are laced with shamanistic rituals that might do 
nothing, but were part of an initial pattern. I had a student who always put 
the statement “X=X” into his Matlab program before using a variable “X.” 
This was ritual rather than knowledge (the statement does nothing); but it 
was extremely difficult to convince him—even with objective evidence to 
the contrary—that the statement was not needed. This shamanistic ritual 
reminded me of the rituals of aboriginal tribes who feed wooden birds be-
cause it seems to help the crops. Why do it? Because it might help and does 
not hurt!

One thing that greatly influenced my thinking on social ritual in technology 
was Jim Waldo’s Project Darkstar at Sun Microsystems. Darkstar attempted 



; LO G I N :  J U N E 201 0	 PRO G R A M M I N G WITH TECH N O LO G I C A L RITUA L A N D A LCH EMY	 25

to analyze the requirements for interactive role-playing games [3]. To me, the 
most surprising finding from Darkstar is that young people do not approach 
interactive RPGs as adults do; bugs are “features,” workarounds are “ritu-
als,” and software quality is defined in terms of not losing long-term state 
(although losing short-term state is acceptable). In other words, if you engage 
in a ritual, the game should not erase your character (a matter of weeks of 
development), but erasing your character’s development for the past day 
is relatively acceptable! The quality of the RPG system is relative to how it 
reacts to ritual and whether its reactions to ritual are appropriately bounded. 
Some Web frameworks could learn from this definition of quality!

So, what is my advice to young students of programming? I do not advise 
them to program as a “civilized” adult like myself; I am less facile than they 
are! I do not advise them to reject shamanism and ritual; technological ritual 
is a basic part of modern survival. I do tell them to develop their own obser-
vational skills to a high art, so that they can track a “personal alchemy” that 
describes how their rituals interact. The result of crowdsourcing this “personal 
alchemy” is a shared “technological alchemy” describing how rituals can be 
combined to achieve new goals. This social emergence of order—and not 
the traditional practice of reading and understanding the source code—is 
already the key to productive programming in the new world of large-scale 
frameworks.

From Alchemy to Chemistry

It is with some poetic justice that I—having shown no aptitude for under-
graduate chemistry—am now put in the position of advocating its value! In 
the same way that alchemy became chemistry, we need a new “chemistry of 
programming” that describes how to combine “elements” (our rituals) into 
“molecules” (more involved rituals) that achieve our ends.

By chemistry, I am not referring to the precise rules of component-based 
programming or object-oriented programming but, instead, to the fuzzily 
defined rules by which rituals are combined into new rituals, without full 
knowledge of the structure behind the rituals. “Programming chemistry” is a 
matter of classifying what rituals are safe to combine, what combinations are 
questionable, and what combinations are likely to explode!

Am I advocating throwing away detailed knowledge? Certainly not. But this 
kind of knowledge—while valuable to the developers of a framework—is not 
empowering to the average programmer of a framework. Or, rather, it is as 
empowering as knowing the physics of electrons is to the chemical engineer. 
This is not a matter of throwing away knowledge but, instead, packaging it 
in a much more digestible form, in terms of what programmers should and 
should not do.

Generations

The difference between me and my students is quite generational. I was 
taught to be compulsive about knowing, in the sense that I will not stop 
peeling away layers of a thing until I know everything about how it works. 
This compulsion was empowering for me but is not empowering for my 
students. Or, it would be better to say, it is about as empowering for them as 
taking apart their cell phones to see how they work! To my students, I am 
somewhat of a dinosaur, and to me, my students are the new shamans of 
technology, engaging in dance and ritual to produce working code.



26	 ; LO G I N :  VO L .  35,  N O.  3

But my students are not lacking in ambition; they engage in their own 
unique flavor of lifelong learning. They learn the rituals that work, and the 
alchemy between rituals: their own descriptions of how to transmute base 
software components into “gold.” But, somehow, it all works, and often it 
does result in “gold.”

REFERENCES

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design 
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley Pro-
fessional, illustrated edition, 1994.

[2] See, e.g., Chapter 12 of Roger Pressman, Software Engineering, a Practitio-
ners’ Approach, 7th edition, McGraw-Hill, 2009. 

[3] Project Darkstar: http://www.projectdarkstar.com. 


