
; LO G I N : J U N E 201 0	 BU I LD I N G A V I RTUA L D N S A PPLI A N CE USI N G SO L A RI S 1 0, B I N D, A N D VMWA RE	 27

A N D R E W S E E LY

building a virtual DNS
appliance using Solaris
10, BIND, and VMware

Andy works for Science Applications Interna-
tional Corporation as the Senior Command
and Control UNIX Engineer at USCENTCOM-
J6, and after hours he teaches computer
studies courses for the University of Mary-
land University College. His wife Heather
is his init process and his son Marek’s first
word was “#!”.

seelya@saic.com

I WA S F A C E D W I T H T H E TA S K O F C R E AT-
ing a new DNS server solution that would
be simple to build and maintain, would
be easy to deploy to remote locations, and
would bring the site into compliance with
DoD security requirements. The goal was to
improve performance and maintainability
while diversifying the DNS architecture and
to accomplish it for free. The tools on the
table were BIND, Solaris 10, and the site’s ex-
isting VMware ESX server installation. In this
article I explain the background and require-
ments and detail the installation procedure
and scripts developed to deliver a virtual
appliance solution.

A Unique Customer with Unique Challenges

I work for Science Applications International Cor-
poration (SAIC) on contract to support the Global
Command and Control System (GCCS) at the HQ
US Central Command (CENTCOM) in Tampa,
Florida. The GCCS shop has the majority of UNIX
servers in the organization, so I am also the lead
UNIX system administrator. Our contract overall
supports the entire spectrum of systems support
for the Command, from configuration manage-
ment to systems engineering, from service desk to
cable installation. You’ll find members of our team
in Tampa writing custom military applications
software, in Kabul configuring routers, and every-
thing in between, all in support of the CENTCOM
mission.

CENTCOM, like many other government organiza-
tions [1], is rapidly expanding its use of virtualiza-
tion, with a particular focus on server consolida-
tion due to limited datacenter space. If it’s a new
system coming into the building, the first thing
that gets asked is if it can be virtualized. CENT-
COM also employs network appliance technologies
when appropriate, especially when the technology
may be intended for a remote site with disadvan-
taged communications and limited on-site techni-
cal skills. New technical services for the Command
will be considered for virtualization, for viable
appliance solution, and for commercial off-the-shelf
(COTS) purchase. In some cases, new requirements
will be candidates for in-house development. In
rare circumstances, a solution touches all four.

An appliance-oriented approach to virtualization
can bring together the benefits of network appli-
ances and virtualized servers while reducing risk

28	 ; LO G I N : VO L . 35, N O. 3

and cost. This is the approach we took when faced with a customer chal-
lenge to improve Domain Name Service (DNS) architecture. By leveraging
the latest Solaris 10 x86, Berkeley Internet Name Domain (BIND) software,
and the Command’s existing VMware ESX environment, a DNS appliance-
equivalent was developed, tested, and brought into service for external
authoritative and internal recursive DNS requirements.

Motivators for Change

DNS is the kind of service that can start out easy and, without significant
effort, scale over time to support an expanding organization. But without a
roadmap, DNS can devolve into a patchwork that no one understands, with
inherent fragility that can baffle even the most seasoned sysadmin. This was
the situation at our customer site. DNS had been grown rather than planned
and, due to the natural turnover of military leadership over the course
of years, there was no single guiding authority or principle to direct that
growth; in military terms, there was no Concept of Operations (CONOPS).
DNS worked fine for years, until suddenly it didn’t work at all for a few days.
The entire site was effectively down while the operations team essentially
had to spelunk the DNS configuration to find the failure point and repair it.
While workarounds were immediately implemented to prevent mission com-
promise during the outage, all involved understood that a military network
is a vital tool and that this type of fragility is unacceptable.

One of the findings that surfaced out of the after-action review was that the
site’s DNS architecture was not aligned with industry best practices and the
Defense Information Systems Agency (DISA) Security Technical Implementa-
tion Guide (STIG) [2] requirements for split-DNS and heterogeneous imple-
mentations. During a redesign discussion it was noted that both problems
could be fixed at once by deploying a new and different set of DNS servers
for the relatively simple external authoritative and internal recursive roles,
leaving the more complex internal authoritative zones to be served by the
site’s existing Microsoft implementation.

Classic Build-Versus-Buy Decision

There are proven DNS solutions in the appliance market, with a focus on
security, ease of use, and total cost of ownership [3]. These appliances tend
to use a hardened Linux kernel and a purpose-built Linux distribution to
reduce the total number of system “knobs that may be turned.” The Infoblox
[4] appliance was strongly promoted at the redesign meeting as the best way
to simplify management and integration. Others at the table were anti-
appliance, reminding leadership that the failure case for an appliance means
a field engineer service call and expensive support contracts compared to in-
house expertise that can respond immediately. This caused everyone to dis-
cuss what it would mean to build something in-house. Everyone agreed that
BIND on Solaris would be an ideal solution from a performance standpoint
but was still not as attractive as the appliance from a security and simplic-
ity point of view. I raised a hand and volunteered to build BIND on Solaris,
virtualize it in VMware, meet all the factors that made the appliance appear
attractive, and do it at no cost.

The DNS “virtualized appliance” project resulted in an appliance-like DNS
capability that allows the Command to comply with DNS security require-
ments, simplifies overall configuration, and significantly improves configu-
ration management control of the external authoritative DNS function. Total
cost of ownership may ultimately be higher due to the relatively few Solaris

; LO G I N : J U N E 201 0	 BU I LD I N G A V I RTUA L D N S A PPLI A N CE USI N G SO L A RI S 1 0, B I N D, A N D VMWA RE	 29

experts on the team, but clear documentation of design and the very terse
installation leave very few moving parts to debug and should prevent any
perception of added expense. Using the virtualization technique, we were
able to save a little bit of space and power in an already cramped datacenter,
and by focusing on security issues as a design parameter I was able to make
a hardened solution that easily conformed to Department of Defense (DoD)
requirements for UNIX systems [5].

Initial Design Parameters and Assumptions

The Command leadership’s biggest complaint (after, of course, DNS having
suffered an outage) was that configuration management (CM) of the DNS
was almost nonexistent. Multiple people in different shops had access to
zone files, there was little accountability for changes, and there was no revi-
sion control. For serious CM, the DNS appliance technical solution needed
to be considered from the start.

Command Information Assurance (IA) immediately had concerns about
STIG-compliance and overall accreditation of this type of system. Without
IA approval, no solution, no matter how good, would see a network light.
The project needed to be STIG-compliant as it grew, preferably with IA
involvement at each step of the development.

The solution had to be small, agile, and portable, easily deployable to other
networks, and easy to upgrade and maintain. We developed this into a DNS
“multiple master” concept, with a plan for potentially multiple DNS master
authoritative servers without any slaves, increasing the simplicity of design
and deployment while obviously trading off the flexibility inherent in a
master-slaves architecture. We determined that there would be no require-
ment for any BIND server cross-talk from other areas of the DNS architec-
ture, which effectively eliminated any requirement for an authorization list
or key management and made the product highly and rapidly deployable.
There were very few tunable knobs in the design parameters.

The Technical Approach

To limit the attack surface of the system we agreed that the only network-
ing ports that would be available would be UDP/53 and TCP/53 in and out
for processing DNS requests, and UDP/123 out for Network Time Protocol
(NTP). When a syslog host was implemented, then UDP/514 would need
to be opened between the DNS host and the syslog host. Otherwise, all
network ports would remain closed, even TCP/22. All command-line access
was limited to console-only and would be controlled and audited tightly by
access from the VMware console.

To keep the footprint as small as possible, I installed the system with Solaris
10’s minimum possible disk allocation of 1.2GB. This could be shrunk down
after the operating system was installed, but there was no requirement to
have a smaller installation.

My initial development environment was VMware Workstation 6.5.3. I
added a new VM with parameters for Workstation 5 and ESX server com-
patibility enabled. The initial concept was to build the vmdk image file in
VMware Workstation and then import it into ESX. This worked well for
initial proof-of-concept testing, but for production I built from scratch in the
native environment.

I built a Solaris 10 U8 system with ZFS, no naming service defined and no
remote services enabled. I selected the “Reduced Networking Core System

30	 ; LO G I N : VO L . 35, N O. 3

Support” group and customized it to remove unnecessary tools and to add in
essential options:

■■ Remove audio drivers and applications
■■ Select BIND nameserver manifest
■■ Select Basic Audit Reporting Tool (BART)
■■ Select Basic IP Commands (root)
■■ Select Basic IP Commands (usr)
■■ Remove Kerberos version 5 support
■■ Remove Network Information System (NIS) support
■■ Select Network time protocol
■■ Select Programming Tools
■■ Expand Remote Network Services and Commands and select Remote Net-

work Client Commands
■■ Select secure shell
■■ Remove non-mandatory Universal serial bus software
■■ Remove libexpat
■■ Remove xvm paravirtualized drivers

This configuration creates dependency warnings for USB, GSSAPI v2, and
Kerberos. These warnings may be safely ignored. This build process results
in a very terse Solaris 10 installation. But there’s more work to be done to
make it ready for action.

In a separate VM I installed a full OEM Solaris 10 with all defaults as a
development environment. In that environment I installed the Solaris Free-
ware GNU C compiler [6] and all related dependencies. In the development
environment I built several scripts and archives to make deployment of the
DNS appliance rapid, simple, and controlled. The pre-configured system files
I set up were:

■■ profile for root to set umask, mesg, stty, and TMOUT values for STIG com-
pliance and usability

■■ syslog.conf to set standard site logging specifications
■■ Customized DNS server manifest to set chroot for BIND [7]
■■ resolv.conf to set the site domain and the local host as the nameserver
■■ ntp.conf with the site’s NTP server IP, and defined locations for driftfile and

statsdir
■■ motd to meet DoD and STIG requirements
■■ db.0.0.127.in-addr.arpa.txt with a typical loopback PTR record
■■ db.roothints.txt with DoD root servers
■■ named.conf: The initial default configuration is for a recursive server only;

authoritative installations will require the named.conf and zone files to be
updated. Set logging options for syslog to support a remote log host.

■■ bart.rules, with directories to be monitored by the Solaris 10 Basic Audit
Reporting Tool (BART) [8]: /var/named, /etc, /usr, /opt, /bin, /boot, /sbin, /lib

■■ lock: A script (see Listing 1, below) to disable useful tools before a host is
placed into production. Note that whenever the machine is locked down,
BART is executed, and a sysadmin is expected to follow up on any BART-
reported changes before the system goes live.

#!/bin/sh
svcadm disable ftp
svcadm disable ssh
chmod 400 /usr/bin/truss
chmod 400 /usr/sbin/ping
chmod 400 /usr/sbin/traceroute
chmod 400 /usr/bin/ftp
chmod 400 /usr/bin/telnet
chmod 400 /usr/bin/ssh

; LO G I N : J U N E 201 0	 BU I LD I N G A V I RTUA L D N S A PPLI A N CE USI N G SO L A RI S 1 0, B I N D, A N D VMWA RE	 31

chmod 400 /usr/sbin/snoop
chown –R root:root /root
chmod –R o-rwx,g-rwx /root
if [-d bart]
then
echo Creating BART baseline
cd bart
latest=`ls -tr1`
rightnow=bart.̀ hostname .̀̀ date %Y%j%H%M`
bart create -r bart.rules > $rightnow
echo Comparing BART baseline
bart compare $latest $rightnow
[$? -ne 0] && echo BART discrepancies found || echo BART integrity OK
cd ..
fi

L I S T I N G 1 : T H E L O C K S C R I P T D I S A B L E S S E R V I C E S , C H A N G E S P E R M I S -
S I O N S T O R O O T O N LY F O R S O M E C O M M A N D S , A N D R U N S B A R T .

■■ unlock: A script that enables the services and utilities that are disabled by
the lock script.

■■ recursive.tar: A tar of the /var/named directory, used to quickly recreate the
chroot file environment on the production system.

■■ configure.sh: The script (Listing 2) to execute on the production build that
completes the configuration and makes the host ready for operations.

#!/bin/sh
groupadd named
useradd -m -d /var/named -c “BIND User” -s /bin/false -g named named
tar -xf bind.binaries.tar
tar -xf recursive.tar
cp syslog.conf /etc/syslog.conf
cp .profile /root/.profile
cp motd /etc/motd
cp ntp.conf /etc/inet/ntp.conf
cp server-chroot.xml /var/svc/manifest/network/dns/
cp resolv.conf /etc/resolv.conf
mkdir -p /var/named/var/named
mkdir /root/bart
mkdir /var/named/var/log
mkdir /var/named/var/run
cp /etc/rndc.key /var/named/etc
chown -R named:named /var/named
mkdir /var/named/dev
mknod /var/named/dev/poll c 135 0
chmod 666 /var/named/dev/poll
chmod 640 /var/named/etc/named.conf /var/named/var/named/*
svccfg validate /var/svc/manifest/network/dns/server-chroot.xml
svccfg delete dns/server
svccfg import server-chroot.xml
svcadm enable dns/server
svcadm enable ntp
svcadm disable network/inetd
svcadm disable cron
svcadm disable name-service-cache
svcadm disable iscsi/initiator
svcadm refresh system-log

L I S T I N G 2 : T H E C O N F I G U R E . S H S C R I P T S E T S U P B I N D A N D D I S A B L E S
U N N E C E S S A R Y N E T W O R K S E R V I C E S .

32	 ; LO G I N : VO L . 35, N O. 3

In order to keep the production system as clean as possible and maintain
the ability to independently upgrade the BIND version without waiting for
Solaris patches, I did an offline compile and transfer. In the development
environment, I downloaded the latest BIND source distribution from ISC [9]
and compiled with prefix of /usr and sysconfig of /etc. After compiling and
testing, I made a tar roll-up into bind.binaries.tar of all the newly created
binaries from /usr/sbin, /usr/lib, and /usr/bin.

Finally, I made a single config.tar.Z containing all the files created in the
development environment. This is the “secret sauce” that is required to com-
plete the transition from generic “terse Solaris 10” to hardened DNS appli-
ance. To complete the configuration, enable ssh, set up root’s $HOME, run
the configuration script, and run the lockdown script:

Enable ssh for root. This is required to copy the configuration file in; ssh
will be disabled in the lock script before the host is deployed in a live envi-
ronment.

/etc/ssh/sshd_config, change “PermitRootLogin no” to “PermitRootLogin yes”
svcadm refresh ssh
scp config.tar.Z to /root/config

Set up root’s home directory:

mkdir –p /root/config
Edit /etc/passwd, change “:/:” to “:/root:”

Configure the host and lock it down:

cd /root/config
uncompress config.tar.Z
tar –xf config.tar
rm config.tar
./configure.sh
./lock

The result is what I consider to be a “versioned release.” Only copies will be
given live IP addresses and placed into production, while a read-only archive
of this and future versions will be made for reference. To turn this into an
authoritative DNS server the named.conf and zone files must be updated
to reflect the authoritative zones and to remove the root hints reference to
prevent recursive queries.

A Close Look at the Running System

The resulting DNS appliance presents a very low-drag surface. Required VM
server farm resources are limited to 2GB of disk device storage and 1024MB
of system memory per installation. The only actively listening port is for
BIND and the system is protected from unauthorized network connections
in or out by an external firewall monitored by the security team. System
boot time in the VM is less than a minute. DNS response time is rapid and
scales well; using first perfquery and then a scripted local test harness we
successfully tested the installation under loads exceeding that experienced
by the previous DNS. The only processes running are essential kernel func-
tions, ntpd, and named, as shown in the following process table:

; LO G I N : J U N E 201 0	 BU I LD I N G A V I RTUA L D N S A PPLI A N CE USI N G SO L A RI S 1 0, B I N D, A N D VMWA RE	 33

ps -ef
	 UID	 PID	 PPID	 C	 STIME	 TTY	 TIME 	CMD
	 root	 0	 0	 0	 18:31:17	 ?	 119:31	 sched
	 root	 1	 0	 0	 18:31:18	 ?	 0:00	 /sbin/init
	 root	 2	 0	 0	 18:31:18	 ?	 0:00	 pageout
	 root	 3	 0	 0	 18:31:18	 ?	 0:00	 fsflush
	 root	 240	 1	 0	 18:31:29	 ?	 0:00	 /usr/sbin/syslogd
	 root	 7	 1	 0	 18:31:19	 ?	 0:02	 /lib/svc/bin/svc.startd
	 root	 9	 1	 0	 18:31:19	 ?	 0:05	 /lib/svc/bin/svc.configd
	daemon	 130	 1	 0	 18:31:26	 ?	 0:01	 /usr/lib/crypto/kcfd
	 root	 201	 7	 0	 18:31:28	 ?	 0:00	 /usr/lib/saf/sac -t 300
	 root	 222	 1	 0	 18:31:29	 ?	 0:00	 /usr/lib/utmpd
	 root	 336	 232	 0	 18:44:34	 console	 0:00	 ps -ef
	 root	 232	 7	 0	 18:31:29	 console	 0:00	 -sh
	 root	 110	 1	 0	 18:31:25	 ?	 0:00
/usr/lib/sysevent/syseventd
	 root	 263	 1	 0	 18:31:32	 ?	 0:00	 /usr/lib/inet/xntpd
	 root	 205	 201	 0	 18:31:28	 ?	 0:00	 /usr/lib/saf/ttymon
	 named	 267	 1	 0	 18:31:33	 ?	 0:01	 /usr/sbin/named -t
/var/named
	 root	 248	 1	 0	 18:31:30	 ?	 0:03	 /usr/lib/fm/fmd/fmd
#

The CM Plan

One of the biggest concerns leadership had with the original DNS way of
doing business was the lack of configuration management or attribution for
system changes. By using the VMware images, a “golden image” concept,
extremely limited direct access, and a strict workflow, the DNS zones will be
extremely stable. The key to this approach is that all configuration changes
will be made offline to a candidate release; only after the candidate release
is tested and validated will it be cloned for production and then archived for
reference. Candidate change lists will be approved by the DNS, UNIX, and
Security teams before implementation. The planned battle rhythm is:

■■ Monthly: New numbered release incorporating updated DNS configura-
tions, security patches, antivirus updates as required by DISA standards [5,
10], and other approved configuration changes. Root password is changed
monthly.

■■ Annually: New major-number release for major operating system updates,
as released.

■■ As needed: Independent security scans as new scanning tools are updated.
■■ As needed: Emergency updates for security patches or DNS configurations.

What About User Accounts?

In the DoD space, passwords have extreme complexity, length, and change
frequency requirements. Given that each deployment of the DNS appli-
ance is expected to stand alone and that direct access will be limited by the
VMware console, a conscious decision was made to completely remove the
requirement for user accounts and thus the requirement for accounts man-
agement. As delivered, this virtualized DNS appliance is limited to the root
login with user audit requirements satisfied at the VMware console.

Part of the roadmap for the DNS appliance project is to completely lock the root
account, effectively removing any command-line access from an operational sys-
tem. This remains a controversial topic with most of the site’s system adminis-
trators, but consider the possible needs for logging in to the operational system:

34	 ; LO G I N : VO L . 35, N O. 3

■■ Inspect system logs: No need because logging is sent to a syslog host.
■■ Clear file systems: The limited applications running on this system do not

generate files and logs are sent to the loghost.
■■ Performance monitoring: Utilization of CPU, memory, and I/O all are ac-

complished from the VMware hypervisor monitor.
■■ Firewall log analysis: Port-level protection has been outsourced to the ex-

ternal firewall, where monitoring is already being performed.
■■ Performance tuning or zone file editing: All system changes should be

done in a candidate release image that gets tested, cloned, and swapped out
with the running system; there should never be an edit of the configuration
of a running system.

■■ General troubleshooting: In the event that a system needs troubleshooting,
a new, unlocked clone will be put on the live network to gather data and
then taken back offline for analysis.

■■ Log in to change passwords every 90 days: No need to do this if there are
no enabled accounts on the system!

Results of the Virtualized DNS Appliance Project

There is no maintenance or licensing sustainment fee, no additional charges
for increasing the installation base, and the only cost of sustaining owner-
ship is the maintenance of a Solaris skill set within the Command. Solaris
10 is used with a cost-free license, BIND is used with a cost-free license, and
the existing VMware ESX covers the expanded use. Total additional cost to
the customer: $0.

The DNS appliance project produced a hardened, reliable, scalable, DNS
solution that meets all design parameters and is compliant with DoD and
Command information assurance requirements. The appliance concept has
been deployed operationally for eight DNS server installations, without any
loss or degradation of service, and more deployments are expected as the
requirement grows and the product matures.

REFERENCES

[1] “Virtualization and Consolidation in the Federal Government,” Govern-
ment Computer News: http://gcn.com/microsites/virtualization-consolidation/
efficiency-gains.aspx.

[2] DNS STIG: http://iase.disa.mil/stigs/checklist/unclassified_dns_checklist
_v4r1-8_20100226.doc.

[3] “Do It Yourself DNS,” Network Computing: http://www.networkcomputing
.com/1406/1406f3.html.

[4] Infoblox: http://www.infoblox.com/.

[5] UNIX STIG: http://iase.disa.mil/stigs/checklist/unclassified_unix
_checklist_v5r1-23_20100226.zip.

[6] Solaris freeware compiler: http://www.sunfreeware.com/indexintel10.html.

[7] BIND chroot manifest example: http://blogs.sun.com/anay/resource/
server-chroot.xml.

[8] Basic Audit Reporting Tool (BART): http://docs.sun.com/app/docs/
doc/816-4557/bart-1?a=view.

[9] BIND download site: http://ftp.isc.org/isc/bind9/.

[10] Jim Laurent’s commentary on the DISA requirement for UNIX antivirus:
http://blogs.sun.com/jimlaurent/entry/update_anti_virus_software_for.

http://gcn.com/microsites/virtualization-consolidation/efficiency-gains.aspx
http://gcn.com/microsites/virtualization-consolidation/efficiency-gains.aspx
http://iase.disa.mil/stigs/checklist/unclassified_dns_checklist_v4r1-8_20100226.doc
http://iase.disa.mil/stigs/checklist/unclassified_dns_checklist_v4r1-8_20100226.doc
http://www.networkcomputing.com/1406/1406f3.html
http://www.networkcomputing.com/1406/1406f3.html
http://www.infoblox.com/
http://iase.disa.mil/stigs/checklist/unclassified_unix_checklist_v5r1-23_20100226.zip
http://iase.disa.mil/stigs/checklist/unclassified_unix_checklist_v5r1-23_20100226.zip
http://www.sunfreeware.com/indexintel10.html
http://blogs.sun.com/anay/resource/server-chroot.xml
http://blogs.sun.com/anay/resource/server-chroot.xml
http://docs.sun.com/app/docs/doc/816-4557/bart-1?a=view
http://docs.sun.com/app/docs/doc/816-4557/bart-1?a=view

