
38	 ; LO G I N : VO L . 35, N O. 3

R U D I V A N D R U N E N

small embedded
systems
Rudi van Drunen is a senior UNIX systems
consultant with Competa IT B.V. in The
Netherlands. He also has his own consulting
company, Xlexit Technology, doing low-level
hardware-oriented jobs.

rudi-usenix@xlexit.com

E M B E D D E D S Y S T E M S C A N B E F O U N D
virtually everywhere. In this article I will
describe some of the features of these small
computing engines and will take you along
the road to building and programming one
yourself to ease simple control tasks in your
daily life. In the embedded world, under-
standing issues of small systems is much
easier when you have encountered them
yourself.

Nearly all consumer electronics nowadays have
some kind of microcontroller built in. Often these
devices have small 8- or even 16-bit processors
with on-chip peripherals, such as analog to digital
(A/D) converters, input-output (I/O) ports, RAM,
or ROM (flash), called microcontrollers, on board.
These processor systems serve basic tasks that used
to be taken care of by either mechanical devices or
analog electronics. An embedded system is a small,
reliable system specially designed and built to do
one specific task, such as control your appliance,
and cannot be user-instructed to perform other
tasks easily.

A typical example of such an embedded system is
in your microwave oven. The microwave often has
a display, keyboard, and a number of sensors and
actuators. Sensors can be a temperature sensor or
the sensor that detects whether the door is closed.
Actuators can be the electronic switch that controls
a microwave tube or a system that controls the ro-
tational speed of a fan. Other examples of embed-
ded systems are the motor management systems
found in all modern vehicles or controllers of all
sorts, the power and temperature controller of your
laptop or server, WiFi routers, and, to a lesser ex-
tent, game consoles, which feature a more complex
software environment, including an operating sys-
tem. You can see that the NTP server I described in
[1] is also in this category.

Layout

Most, if not all, of the low-end embedded controller
systems do not run an operating system that hides
all devices for the user or developer. Instead, the
user program is directly in full control of all hard-
ware and there are no separate processes or tasks.
Also, all interrupts on the system are to be handled
directly by the user software. Often the interrupts
are triggered by the hardware when asserting the
interrupt pin on the chip to a specific logic level.
This can be done by an external device or switch.

; LO G I N : J U N E 201 0	 SM A LL EM B E D D E D SYSTEMS	 39

More complex embedded systems run specialized microkernels capable of
job scheduling and doing real-time interrupt processing. In some cases this
can be some flavor of UNIX, most commonly Linux or BSD. In this article
we will focus on the systems that have no operating system, as these are the
simplest to work with.

Hardware

There are a number of different families of embedded processors, all with
their own architecture. Often the chip vendor manufactures a large number
of different chips with the same core processor architecture, but with an
enormous diversity of hardware interfaces, such as serial and parallel ports,
analog inputs and outputs or even USB, or complete Ethernet interfaces with
a hardware TCP/IP stack on the chip. This makes the development of hard-
ware devices with these processors fairly easy. You don’t need many chips
to build a complete processor system. The downside is that the different
families of processors all have their own architecture and instruction sets
and need different development tools, so you may select a chip that has far
too many I/O devices for your specific task.

Software

As I said before, the described embedded systems do not have an operating
system, so development of software for embedded systems almost always
takes place on a host system that has cross-compilers/assemblers to generate
code for the target device. The target device is a board containing (at least)
the processor and peripheral chips and sensors/actuators that will be used in
the final application.

Lots of different vendors supply their own software or even hardware devel-
opment environment for the processor family they make. These toolsets (and
boards) often consist of an editor, a compiler/assembler, and a (down) loader.
Unfortunately, almost all of these software tools run only under the Micro-
soft Windows environment. WINE can be of use here, but your mileage may
vary, as vendor support may be very limited; especially when using complex
debugging or download hardware that communicates to the IDE, you might
encounter some problems.

Nowadays, it is quite common to do development for embedded systems in a
higher language such as C or C++, in contrast to earlier development, which
was completely done in assembly. By selecting C or C++ as a development
language, it is fairly easy to use the well-known open source GNU toolchain
(gcc) to generate code for a different architecture than is used to compile on.
This process is called cross-compiling/assembling. After cross-compiling, as-
sembling, and linking your program, libraries, and start-up code, the result
is either a full binary file or an ASCII hex-file that contains the application
and supplemental code. This file can be downloaded into the on-board or
on-chip flash in the target system. A hex file is an ASCII file with the hex
representation of the addresses and bytes that need to be there, with an ad-
ditional checksum [2].

System Robustness

While writing software for embedded devices it is important to remem-
ber that these systems often will be running 24x7 for many years without
being rebooted. Also, often these systems will be controlling devices that
need safety precautions. Recently, embedded systems in cars have been in

40	 ; LO G I N : VO L . 35, N O. 3

the news because of lack of software robustness [3]. If the software or the
hardware of an embedded system fails, often dangerous situations can occur.
Keeping this in mind, software robustness in embedded systems is very
important. Also, the robustness of the hardware is a key factor. In software
it is important not to use uninitialized variables, so be careful with dynamic
allocation of memory, for example. On the hardware side, it is important to
use a quality platform, good PCBs, and good manufacturing processes, and
allow for timing and temperature margins in the hardware design.

Watchdog

To enhance system robustness it is wise to build in a watchdog system. A
watchdog is a combination of a hardware timer, which resets the processor
when it counts down, and some software statements throughout the main
loop of the program. When running, the software statements reset the hard-
ware timer before it runs out and resets the processor. If for some reason
the software crashes, the hardware timer will not be reset and the system
processor will be reset and the software restarted.

Downloading

Downloading the code onto the target processor or target board will get you
to a bootstrap problem, as the processor generally has no code at that very
moment and cannot help you with downloading the image into its flash
memory. There is no code present to take a byte from an (e.g., serial) inter-
face and write it to flash. So JTAG is often used to bring up a board from
scratch. JTAG [4] is a bit-bang protocol that is supported by a number of dif-
ferent hardware components to do in-circuit production testing, but down-
loading bytes into memory devices or on-chip memory without using the
processor is also supported. After downloading your binary image into the
memory of the processor or on the board, the reset line of the processor can
be released and the processor starts executing the just downloaded code.

Some embedded evaluation boards come complete with a processor that
has a piece of code in its ROM that is either factory programmed or pro-
grammed into the memory using a chip-programmer. This piece of code is
called the bootloader. It runs after reset and instructs the processor to accept
databytes, often in a HEX file, and put them in memory. Then it instructs
the processor to start executing the just downloaded code. This is by far the
easiest way to program/download code into a processor or board. Often, the
toolchain used contains special download software to do just this.

Debugging

As the target system often has no operating system, it can be quite difficult
to debug an embedded program running on a piece of target hardware. A
number of options are available here:

1.	 Use of a simulator/emulator running on a host machine, simulating the tar-
get processor and all peripherals. This system provides a complete simula-
tion of the target in software and thus all software debugging features.

2.	 Use of an in-circuit emulator. This piece of hardware replaces the hardware
processor and gives full control of all innards of the processor, including
breakpoints.

3.	 Use of an in-circuit debugger, mostly connected to the system using JTAG
(see above) if your target processor has features for debugging using these
kind of tools.

; LO G I N : J U N E 201 0	 SM A LL EM B E D D E D SYSTEMS	 41

4.	 Use of I/O, adding statements to your software to show the state on the
available I/O: for example, displaying the state on an LCD display if avail-
able, or flashing LEDs on the board if your software reaches a certain state.
The problem here is that you are actively interfering with the program code
you are debugging.

Processor Families

In the embedded world there are a number of popular processor families.
Next to the standard processors, some large vendors design their own
processor using semi-custom chips and (VHDL) processor cores that they
integrate. The most important and popular processor families are:

■■ Intel 8051 [5] The 8051 is one of the earliest embedded processors con-
trolling appliances. It is an 8-bit processor built on the Princeton architec-
ture.

■■ ARM [6] The ARM family features a 32-bit core and is licensed to a num-
ber of different manufacturers that integrate the core with different pe-
ripherals on one chip. The ARM chip is a RISC architecture and capable of
running at a fairly high clock speed.

■■ PIC [7] The PIC (Programmable Interrupt Controller) is a controller family
built by the Microchip Corporation. They are available in different sub-
families featuring 8-, 12-, or 14-bit memory addresses, but all feature a
small set of 8-bit instructions and have a Harvard architecture. PICs are
generally popular with hobbyists and industrial developers. Microchip, as
well as other vendors, supplies IDEs and compilers/assemblers for different
languages. Some of them are open source, such as JAL [8].

■■ AVR [9] The AVR microcontrollers are 8/16-bit RISC devices built by At-
mel. There are three subfamilies of the AVR chips: TinyAVR, MegaAVR, and
xMegaAVR, each featuring more memory and complex peripherals. The
latest addition to the AVR family is a 32-bit DSP-like architecture.

Of course there are many more microcontroller families with their own
specific features and instruction sets, often targeted to a specific application
area. Nowadays most applications requiring an embedded microcontroller
are often built in an Application Specific Integrated Circuit (ASIC), where
the processor often is integrated as a VHDL module together within the
custom chip.

Practicalities

To get started building a small system and developing software for an em-
bedded system, you need to consider a number of different things. First of
all, you need to select the processor family for the job. This can be difficult,
since many parameters are in play. One of the major issues is the number of
resulting devices you need to produce. If you are building a one-off device
for a project, you may want to focus on ease of learning to program the
device. Next, the hardware interface possibilities (interface ports, analog
and digital on the selected chip) and software development environment are
important.

AN EXAMPLE

As a starting point, I suggest a readily available small controller board. This
lowers the threshold to get started, especially for non-electronics engineers.
The Arduino [10] board as shown in Figure 1 is a reasonably cheap AVR
board with a powerful processor with many interface possibilities. This

42	 ; LO G I N : VO L . 35, N O. 3

popular board features an AVR ATmega328 processor and an open source
development environment. Following the Arduino concept and the same mi-
croprocessor, there are also a number of other boards available in the public
domain, such as the JeeNode [11] or StickDuino [12].

F I G U R E 1 : A N A R D U I N O D I E C I M I L A B O A R D W I T H A N A A C E L L A S S I Z E
R E F E R E N C E

First of all, design your hardware and build a prototype target system. This
can be as easy as using an on-board LED to experiment with. The Arduino
Diecimila has an on-board LED connected to I/O pin number 13. With
other boards you might need to wire up an LED as in Figure 2. The I/O
ports of the processor can drive an LED directly. I recommend starting with
something as simple as an LED to get used to the development cycle and the
programming language.

F I G U R E 2 : C O N N E C T I N G A N L E D

The next phase is installing the development software on your host. The
integrated development environment for Arduino is open source and uses
the Processing [13] programming language. Processing looks a lot like
C and was developed in a visual arts environment, but has matured to a
production-ready development environment. In addition, a gcc toolchain is
available to generate code for the Arduino [14]. The easiest way to start is to
get the Processing integrated processing development environment for your
platform (Windows, Linux, Mac OS X) and work with that. The Arduino
IDE supports editing Processing with syntax highlighting and compiling/
linking and uploading the code, as well as a simple terminal feature. The
terminal can be used to connect to the target board, when you choose to
output data using the serial interface. It also features a system to keep track
of your libraries. The modern Arduino boards feature a USB interface to do
the download and serve as I/O for the serial port, so you may also need to
install a driver for the FTDI USB to serial interface.

The processor chip that is mounted on the Arduino board already has a
boot loader program in part of the on-chip flash, so there is no need to add

; LO G I N : J U N E 201 0	 SM A LL EM B E D D E D SYSTEMS	 43

software on the target to communicate with the host machine. If you use
an Arduino Diecimila board, the power can be delivered through the USB
interface if you set the jumper accordingly, so you are ready to roll.

Now, as the Arduino Diecimila board has an on-board user-programmable
LED, a good first program, which is called a sketch in Processing, should
blink this LED. Therefore we initialize the I/O port, turn on the LED, wait
and turn off the LED again, as shown in Listing 1. This code is available as a
demo in the Arduino IDE under File -> examples -> Digital -> Blink.

/* Blink a LED on the Arduino Using Processing */

int ledPin=13;

void setup() {
	 PinMode (ledPin, OUTPUT);
}

void loop(){
	 digitalWrite (ledPin, HIGH);
	 delay (1000);
	 digitalWrite (ledPin, LOW);
	 delay (1000);
}

L I S T I N G 1 : Y O U R F I R S T A R D U I N O P R O G R A M : B L I N K T H E L E D
C O N N E C T E D T O I / O P I N N U M B E R 1 3

The setup() method runs once, at start of the sketch, and the loop() method
runs as long as the board has power or until you download another sketch.

After compiling and downloading the sketch, the board should start the
sketch and the LED should blink.

You also can use standard UNIX utilities and a gcc toolchain that has been
configured to cross-compile (avd-gcc) and generate code for the ATmega pro-
cessor, if you do not like the Processing language or the IDE. Downloading
code and data is done using an utility called AVRDUDE, the AVR Down-
loader/UploaDEr [15]. This program reads a hex-file, connects to the virtual
serial port behind the USB interface, and speaks the Arduino bootloader
protocol, which is standardized by Atmel as STK500 [16]. In addition, this
program can use JTAG to program the bootloader in an empty chip.

Another relatively unknown language that supports the Arduino platform is
called concurrency.cc [17]. It allows running Occam-like parallel programs
on tiny devices.

Interfacing

There are libraries for other input and output devices, as well as a vast num-
ber of boards, called shields for the Arduino or plugs for a JeeNode, that con-
nect to the processor board and have special functions, including Ethernet
connectivity, zigbee interfaces, and interesting sensors such as temperature,
GPS position, compass heading, barometric pressure, or force to connect
your system to the real world.

CONNECTING INPUT

The ATmega processor that is used on the Arduino board has pins that can
be configured as digital inputs. The status of these pins shows as the bits in

44	 ; LO G I N : VO L . 35, N O. 3

a word that you can read in software. Standard practice is to pull the port
high with a resistor and connect it to ground using the switch (see Figure
3). Also, use a small series resistor in case you make a programming mistake
and program the port as output and set it high, so that you do not com-
pletely short-circuit it to ground and destroy your Arduino I/O pin.

Small switches can be read this way. An important thing to note here is that
if your software polls the switch line, you will often detect multiple opens
and closures when just pressing the button once. This phenomenon is called
bounce and is caused by the mechanical nature of the switch. Building in a
small delay when polling a switch will help de-bounce the input reading.

There are also a number of pins that take analog input voltages; the value of
the voltage on the pin is shown as the value of a word that can be read in
software. These pins use the on-chip analog-to-digital converter.

Loads of sensors nowadays have the analog-to-digital conversion built into
the chip. The sensor measures an inherent analog value, such as temperature
or barometric pressure, but has output pins that serially output the value
using a protocol such as I2C, SPI, or 1-wire [18]. I2C, SPI, and 1-wire are all
bus-like systems where you can serially transmit data from and to multiple
devices using a small number of lines (wires). All of these protocols have
their own software library that can be used in your user programs to com-
municate according to the protocol.

If you use the sensors with integrated AD conversion you do not need to
take a lot of precautions to condition the (often very low) voltage analog
signals using sensitive amplifiers and converters. Figure 4 shows a setup of
how to connect a I2C device to an Arduino board. Here you see a compass
sensor. The I2C library uses two analog input lines as digital inputs.

F I G U R E 3 : S W I T C H I N P U T

F I G U R E 4 : A S E R I A L C O N N E C T I O N T O A C O M P A S S S E N S O R

; LO G I N : J U N E 201 0	 SM A LL EM B E D D E D SYSTEMS	 45

CONNECTING OUTPUT

The Arduino outputs a standard 0 or 5 volts level at its output pins. These
output pins can drive small loads. For larger loads you need to amplify the
signal or provide indirect control using a relay. There are special add-on
boards for the Arduino that allow you to control small low-voltage motors or
LED arrays. There are even small LCD displays with ASCII only or bit-image
graphics that are supported by different libraries [19]. Often these displays
are connected in parallel to the Arduino board, using four or eight data lines
and some control lines connected to I/O ports.

You should be very careful if you want to connect the Arduino board to
control a device that is at mains voltage. For this case a device called a solid-
state relay (SSR) should be used, separating the low voltage from the mains.
This building block accepts standard low-voltage output from an Arduino
board and separates it optically, using an LED and a photo (light sensi-
tive) transistor from the part that actually switches 110 or 230 volts. These
devices come in a hermetically sealed and insulated housing, so apart from
the terminals there are no live voltage-carrying parts outside. Figures 5 and
6 show such a device and the way it is connected. The additional advantage
of using such a solid-state relay is that the device switches the load on or off
at the 0 volts crossing of the AC mains voltage, reducing noise and power
surges.

A note of caution is important here: Make sure the mains connections are prop-
erly insulated and protected from accidental touch.

F I G U R E 5 : A S O L I D - S T A T E R E L A Y

F I G U R E 6 : S E T U P O F A S O L I D - S T A T E R E L A Y T O C O N T R O L A H I G H -
V O LT A G E D E V I C E

46	 ; LO G I N : VO L . 35, N O. 3

CONNECTING TO A NETWORK

For the Arduino boards, there are different methods for connecting to an
Ethernet network. All rely on separate boards that add an Ethernet interface.
The most commonly used board holds an Ethernet chip (Whizznet W5100)
that also implements the low levels of the TCP/IP stack [20]. It communi-
cates over a three-line serial (SPI) protocol to the processor board and is
supported by a library to read from and write to the network (address). The
advantage of using just three lines is that a vast number of I/O lines of the
processor stay available for your own I/O. The disadvantage is that more
processor cycles are used to implement the SPI protocol.

F I G U R E 7 : A N A R D U I N O B O A R D (B O T T O M) W I T H A N E T H E R N E T
S H I E L D (T O P)

Applications

Applications for these small embedded systems are plentiful. They range
from small systems such as an alarm clock or a controller board, to control
devices such as fans in a server rack or electronic locks, to a more complex
system that controls an autonomous robot or a sensor network measuring
different environmental parameters at different locations and communicating
wirelessly to a master device. Applications are not restricted to the technical
field, as the creative crowd has also discovered the power of small controller
systems to, for example, build art installations that emit sound or light and
work cooperatively [21].

Conclusion

In contrast to the more complex systems we work with every day, there is
a complete world of small controllers and computing devices that help us
in daily life. Building a hardware-oriented small controller to help you with
simple tasks is not difficult. There are a number of modern tools and ready-
to-be-used hardware platforms that can be implemented easily, enabling you
to build embedded systems with little effort while yielding great results.

ACKNOWLEDGMENTS

Thanks go to Rik Farrow for the comments on the initial draft of this article.
A word of thanks also goes to Competa IT, my employer, for giving me the
freedom to write this article

; LO G I N : J U N E 201 0	 SM A LL EM B E D D E D SYSTEMS	 47

REFERENCES

[1] Rudi van Drunen, “A Home-Built NTP Appliance,” ;login:, vol. 34, no. 4,
August 2009.

[2] Intel HEX file: http://pages.interlog.com/~speff/usefulinfo/Hexfrmt.pdf.

[3] Toyota: http://developers.slashdot.org/story/10/03/13/1611248/
Toyota-acceleration-and-Embedded-System-Bugs.

[4] JTAG: http://en.wikipedia.org/wiki/Joint_Test_Action_Group.

[5] 8051 series: http://www.eg3.com/8051.htm.

[6] ARM: http://www.arm.com.

[7] PIC overview: http://en.wikipedia.org/wiki/PIC_microcontroller.

[8] JAL: http://www.voti.nl/jal/index.html; JALv2: http://www.casadeyork
.com/jalv2/.

[9] AVR Atmel: http://www.atmel.com/products/AVR/.

[10] Arduino: http://www.arduino.cc.

[11] JeeNode: http://news.jeelabs.org/2009/03/05/jeenode-v2-pcb/.

[12] StickDuino: http://spiffie.org/kits/stickduino/start.shtml.

[13] Processing: http://processing.org/; http://hardware.processing.org/.

[14] avr-gcc: http://www.symbolx.org/robotics/107-arduinoavr
-command-line-dev-environment.

[15] AVRDUDE: http://www.ladyada.net/learn/avr/avrdude.html.

[16] STK500 Protocol: http://www.atmel.com/dyn/resources/prod
_documents/doc2525.pdf.

[17] Concurrency.cc: http://concurrency.cc/.

[18] Arduino and Two-Wire Interface: http://www.nearfuturelaboratory.
com/2007/01/11/arduino-and-twi/.

[19] LCD Library: http://www.arduino.cc/playground/Code/LCD4BitLibrary.

[20] Ethernet Shield: http://www.arduino.cc/en/Main/ArduinoEthernetShield.

[21] Arduino in Vancouver: http://vimeo.com/9821419.

http://www.voti.nl/jal/index.html
http://processing.org/
http://www.ladyada.net/learn/avr/avrdude.html
http://www.atmel.com/dyn/resources/prod_documents/doc2525.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2525.pdf

