
; LO G I N : J U N E 201 0	 I VOY EU R : P O CK E T S - O - PACK E T S, PA RT 1 	 59

D A V E J O S E P H S E N

iVoyeur: pockets-
o-packets, part 1

Dave Josephsen is the author of Building
a Monitoring Infrastructure with Nagios
(Prentice Hall PTR, 2007) and is senior sys-
tems engineer at DBG, Inc., where he main-
tains a gaggle of geographically dispersed
server farms. He won LISA ’04’s Best Paper
award for his co-authored work on spam
mitigation, and he donates his spare time
to the SourceMage GNU Linux Project.

dave-usenix@skeptech.org

T H E W I N D I S E V E R Y W H E R E , A C O N S TA N T
roar that threatens to rip my hat off my
head and send it tearing 500 feet into the
canyon below. Even the birds can’t seem to
fly in it, so I’m surprised by the shadow cast
by the turkey vulture that’s now circling us
above the pass. It’s the first bird I’ve seen
aloft in days, and it’s obviously having a
hard time remaining so. We’re nearly to the
top of the Caprock Canyons south prong
when my pager goes off. I glance up at my
wife who, thankfully, didn’t hear it through
the wind.

I take the pager from my pocket and have a quick
look. Office users are complaining of network
slowness; I should ignore them. This is supposed
to be a day off in a place 300 miles distant. A place
of rocks and juniper. But a small voice in the back
of my head says simply, “But you can.” It’s true . . .
here in the middle of a scramble up to the ridgeline
and despite this infernal wind, it’s possible for me
to diagnose network latency at the office. I can. The
thought simultaneously amuses and offends me.

I bring up the ssh client on my pager, ssh to the
pcap box, and run a quick racluster [1] command.
Seeing the result, I hastily type my reply (“Tell
Larry to stop downloading My Little Pony epi-
sodes”), just before my wife looks down and asks if
I’m okay.

“Yep,” I shout in reply.

“Tell me you’re not on that pager,” she yells, raising
an eyebrow.

“I’m not,” I shout, returning it to my pocket.

As we continue our hike my mind mulls all the
pieces that make what just happened possible,
from the cellular infrastructure back on down to
Ken and Dennis. So much work. It occurs to me
to wonder if it’s a miracle or a curse. I suspect the
latter but can’t say for sure. One thing I do know,
however, is good article fodder when I see it, so
let’s spend the next couple of issues talking about
the pieces of a decent packet capture framework.

Collecting IP packets for offline analysis is a bread-
and-butter sort of monitoring infrastructure. If you
aren’t centrally collecting packets, you probably
have lots of little tools that work for a single type
of device and can tell you only about a small piece
of the network. One gains a lot from centralizing
packet and flow data. IDS/IPS, network utilization

60	 ; LO G I N : VO L . 35, N O. 3

and trending, and a slew of other buzzword activities become greatly simpli-
fied, and efforts that used to be complicated and intertwined can be made to
function to each other’s benefit.

For example, Snort IDS alerts are great [2]. They catch all sorts of question-
able network behavior, but without a centralized packet repository and
the tools to analyze it, these alerts lack context. For example, is it in fact
aberrant that server A conducted what appears to be a replay attack against
server B, or is that just what happens the first Wednesday of every month
because of some weirdo backup software doing weirdo things? If the packets
are localized in such a way that Snort and Argus [1] can both use them, then
you don’t need to spend hours running down context behind Snort alerts (if
you can at all).

Having an offline packet repository can really be a life-saver in all sorts of
ways. Getting DoS’d and can’t log into the router? Ask Argus. Broken project
planners asking for answers by tomorrow to questions that take months to
answer? Ask Argus. Ex-girlfriend who also happens to be the head NOC
sysop ignoring your BGP looking-glass RFIs? Ask . . . well, you get the point.

The easiest way to collect IP packets in a central location and to ensure that
the greatest number of tools can make use of them is, in my opinion, to
simply redirect them all to a single interface (or series of interfaces for larger
environments) on a single host. This can be a bit of a trick, but it can be
done, and once you’re there, you’re golden, because pretty much any tool
designed to analyze packet traffic can listen to a named interface.

Normally, the goal is to capture any packet that traverses a network seg-
ment, and for most folks there are three ways to do that. Assuming you use
Cisco gear or something else that supports netflow, you could use flow data
instead of raw packet dumps and export the flows to a pcap box. Several
tools, including Argus, can read flow data, but this does limit your options
later on and incurs a bit of utilization on the router or firewall in question.

Next, you could use a span port on the switch. Span ports are great; you get
real packets, you can consolidate packet dumps from several devices to one
port, and they don’t cost anything extra. Their primary disadvantage is that
they may impact the performance of the switch, and this is highly archi-
tecture-dependent. A breakdown of span port impact on performance for
various Cisco switch architectures may be found at [3]. If you have a mid- to
high-end Cisco switch, you’re fine.

The third and most expensive is a hardware network tap. These are really
great; they’re inserted between a device and the switch and provide a dupli-
cate of every packet on a separate port (or set of ports). We use aggregating
taps from NetOptics [4]. They’re rack-mountable boxes that can tap multiple
10/100 links and aggregate them all to a single 1gbps link. They fail open, so
they’re not a point of failure if something happens to them (short of physical
explosion). There are much larger, much more expensive taps [5] that can
aggregate multiple gbps interfaces, for ISPs and very large environments (you
guys know who you are), but in my experience it’s easy to overestimate what
you actually need here. Most environments, surprisingly, can get their pcap
traffic down to a single interface on a single box without much trouble.

If you use software routers, then you have an additional option: a software
tap. We use OpenBSD routers quite a bit, and I very much like daemonlog-
ger [6] for this purpose. Daemonlogger, written by Marty Roesch (who also
wrote Snort), can be thought of as a daemonized tcpdump. It listens to a
network interface and either logs the packets to disk or sends them to a
remote machine. Daemonlogger comes in handy on the pcap machine too,

; LO G I N : J U N E 201 0	 I VOY EU R : P O CK E T S - O - PACK E T S, PA RT 1 	 61

since it’s likely the pcap machine will need to be plugged into a combination
of span ports, network taps, and other devices. Daemonlogger can be used
to consolidate all of these interfaces by starting an instance per interface and
telling them all to forward to the same interface. It also comes in handy for
those super-sensitive boxes for which it’s not good enough to only capture
traffic that traverses a network segment. If you need every packet that a
given database server sends and receives, Daemonlogger is a great way to go.

Since our goal is to aggregate all of our captured packets to a single interface,
we should put some thought into that interface. The DAG network cards
from Endace [5] are just the thing here. They’re expensive but are generally
considered to be the best available for pcap and network audit work [7].

So now that we have packets from span ports or flow data or taps or all of
the above coming to our pcap box, what do we do with them? There are
many answers to this question, but the first three that spring to mind are
Argus, Snort, and Daemonlogger (yet again). And none of these are mutually
exclusive; all of these tools can listen to the same port at the same time and
get what they need, provided the machine has the horsepower to run them.
Some other popular answers, in no particular order, are Wireshark [8],
NTOP [9], and Bro [10].

I mention Daemonlogger here again because in its disk-logging mode it
writes binary pcap files, just like tcpdump, and has built-in options for log
file naming and rotation, so it’s a great way to provide a lowest-common-
denominator online archive of pcap data. Every tool that works with packet-
data supports this format, and Daemonlogger is so lightweight it’s just about
free.

Snort and Bro are both awesome IDS tools that will do a bang-up job listen-
ing to the pcap interface. In our setup, Snort is configured to listen to the
pcap interface and alert via syslog.

Argus describes itself as a Real Time Flow Monitor that is designed to per-
form comprehensive data network traffic auditing. In my opinion it’s about
the coolest network-centric monitoring tool that was ever invented and the
entire reason this infrastructure should be built.

Argus may be run as a daemon, reading live packets from a network inter-
face, or as a user program, reading packets from a packet capture file. The
default behavior is to run as a daemon, which is what we’re interested in
here. Point the Argus daemon at your pcap interface, and it’ll read in and
transform the incoming packets into stream data which it then stores in a
database. To analyze the data you need the Argus client ra (“read Argus”),
which is available as a separate Argus-clients package on most OSes and
distros.

The client programs may either read from an Argus server’s data files on lo-
calhost, or from a remote Argus server if the server has been set up to listen
to remote requests. If you want Argus to listen over the network for client
requests, simply pass it a -P switch. There are obvious security ramifica-
tions to doing this, so Argus may be compiled with SASL support to provide
authentication and authorization.

Ra has several partner programs, the two most important being rasort and
racluster. There are also a slew of third-party Argus clients to do everything
from logging to graphing and visualization. The sky is the limit with the
Argus clients; you can interact with them to discover anything you might
want to know about the network traffic contained within them. Questions
such as, “How much data was transferred in the last 20 min?” “Who are the
top 10 users of the bittorrent ports?” and “What hosts are trying to infect

62	 ; LO G I N : VO L . 35, N O. 3

other hosts with virus X?” are all straightforward queries to racluster and
rasort.

Stay tuned for much more detail on Argus in my next article, including file
management basics and a primer on using ra. Between you, me, and the
vulture, the racluster command I typed on the south prong trail was:

racluster -M rmon -m saddr -r <my_data_file> - ip | rasort -M bytes -r - -w - | ra -N
10

. . . or, in English, “Give me a list of the top 10 bandwidth users sorted by
byte-count in the last hour.”

Take it easy.

REFERENCES

[1] Argus Real-Time Flow Monitor: http://www.qosient.com/argus.

[2] Snort IDS: http://www.snort.org.

[3] Catalyst Switched Port Analyzer (SPAN) Configuration: http://
www9.cisco.com/en/US/products/hw/switches/ps708/products_tech_note
09186a008015c612.shtml.

[4] NetOptics hardware taps: http://www.netoptics.com/.

[5] Endace high-speed packet capture devices: http://www.endace.com/
high-speed-packet-capture-hardware.html.

[6] Daemonlogger: http://www.snort.org/users/roesch/Site/Daemonlogger/
Daemonlogger.html.

[7] Endace recommendation details: http://www.qosient.com/argus/
sensorPerformance.htm.

[8] Wireshark Packet analyzer: http://www.wireshark.org.

[9] NTOP Network Management framework: http://www.ntop.org/news.php.

[10] Bro IDS: http://www.bro-ids.org.

