ROBERT MARMORSTEIN AND
PHIL KEARNS

debugging a fire-
wall policy with
policy mapping

Robert Marmorstein will graduate from the College
of William and Mary this summer with a Ph.D.in
Computer Science. When he is not actively research-
ing ways to manage and analyze firewalls, he spends
his time avoiding grues in the Great Underground
Empire.

rmmarm@cs.wm.edu

Phil Kearns is an Associate Professor of Computer
Science at the College of William and Mary. His
research interests lie in the general area of computer
systems.

kearns@cs.wm.edu

IF YOU MANAGE A LARGE NETWORK,
chances are good that lurking somewhere
in your firewall policy is an error that could
compromise the security of your network.
Firewalls are subject to many different
kinds of configuration errors. Although
many of these glitches are relatively harm-
less, some can seriously compromise your
policy’s correctness and reliability. Inserting
a rule into the policy twice may cause a
negligible performance hit but usually does
not affect the correctness or security of the
policy. However, a typo in a critical rule may
give an untrusted host access to your
important servers. Until recently, debug-
ging a firewall policy with more than a few
rules was a challenging and tedious task. In
the past few years, however, new tools for
analyzing the policy have made finding fire-
wall gremlins much easier. With these tools,
you can find and repair many common fire-
wall problems quickly and easily.

44 ;LOGIN: VOL. 32, NO. 1

ITVal is a framework we designed for testing ipta-
bles-based Linux firewalls. It was originally
intended to provide an open-source alternative to
existing commercial testing tools such as the Fang
firewall analysis engine [7, 9] and the Internet
Security Scanner [3]. Like those tools, it relied
either on the user’ ability to create logical queries
describing the desired behavior of the firewall or
on a pregenerated set of generic tests. We quickly
discovered, however, that devising meaningful and
effective queries required nearly the same effort as
inspecting the firewall by hand. To address this
problem, we came up with a new method of de-
bugging the firewall rule set.

Our new technique is easily usable by any system
administrator. It doesn’t need extensive prepara-
tion of queries, cases, or tests. In fact, the only
input requirement is a textual representation of
the policy (easily generated by the iptables -L -v -n
command). As output, it produces a map of the
network that can be used for detecting anomalies
in the policy.

The policy map divides hosts into groups based
on their interaction with the firewall. If the fire-
wall treats two hosts the same, they will belong to
the same group. If they are treated differently, they
belong to different groups. A correct policy will

;LOGIN: FEBRUARY 2007

usually divide the hosts of a network into logical, easily identifiable groups
based on their function within the network. One group might be the “all
workstations” group. If the network distinguishes between different kinds
of workstations, there may, instead, be separate groups for “Solaris worksta-
tions” and “Linux workstations.” Other groups might be the “Web servers”
group and the “wireless hosts” group.

It is significant that the map generated by the component of ITVal de-
scribed in this article does not rely upon user input. The map is generated
by processing only the iptables rules set that defines the firewall policy. In
a very real sense, it is merely a different representation of the set of iptables
rules, but we contend that it makes the difficult task of finding some errors
in firewall configuration much easier.

Since you probably have a good intuitive idea of the various types of hosts
on your network, it is relatively easy to check that the firewall policy map
represents a correct policy. The policy map probably won't reveal every
error in your policy, but it will make many of the most significant errors
instantly visible. A quick glance at the policy map will reveal significant
bugs in the firewall policy that query-based tools could not easily uncover.

Debugging a Firewall

To create a policy map, you need to create a few important input files. The
first step is to dump a copy of your firewall policy to disk. If you have root
access, this can be done simply by typing iptables -L -n -v > myRules at the
command line. If your firewall uses packet mangling, you also need to
dump the NAT table to disk with iptables -t NAT -L -n -v > myNatRules.

You also need to provide a query file, myQuery, containing the single state-
ment QUERY CLASSES;. This tells ITVal to generate the policy map for the
input firewall.

You can now use the command [TVal -F myRules -N myNatRules -g myQuery
to generate the policy map. ITVal will create a list of the various host
groups in the firewall policy and display them on stdout.

The firewall policy in Table 1 protects subnet 128.30.40.0/24 from the
outside world. The network has a few key servers: a mail server (128.30.
40.10) and two identical Web servers (128.30.40.11-12). Hosts on the net-
work also talk to two special machines outside the network: a name server
(128.30.1.128) and a network time server (64.15.175.5). The policy contains
several errors, which can easily be detected by inspecting the policy map.

Target Source Destination Port
1 ACCEPT Anywhere 128.30.40.0/24 DNS
2 ACCEPT 128.30.40.0/24 Anywhere DNS
3 ACCEPT 128.30.40.0/24 64.15.175.5 NTP
4 ACCEPT 128.30.40.0/24 128.30.40.0/24
5 DROP 1128.30.40.0/24 128.30.40.13
6 ACCEPT 128.30.40.0/24 218.30.40.10 SMTP
7 ACCEPT 128.30.40.0/24 128.30.40.10 IMAP
8 ACCEPT 128.30.40.0/24 128.30.40.12 SSH
9 ACCEPT Anywhere 128.30.40.11 HTTP
10 ACCEPT Anywhere 128.30.40.12 HTTP

TABLE 1: A BUGGY FIREWALL POLICY

This policy is intended to enforce a few important rules. We want to allow
mail traffic only between trusted clients and the mail server. (This is unre-

DEBUGGING A FIREWALL POLICY WITH POLICY MAPPING 45

alistic, since the mail server will also need to send and receive messages
from the outside world, but it makes the example much simpler.) We also
want both Web servers to allow HTTP connections from any host and SSH
connections from clients on the trusted subnet. Furthermore, any of our
systems should be able to access domain name service and the network
time service, but only from appropriate servers. Using ITVal, we can gener-
ate a map of this firewall policy. The policy map for the firewall in Table 1
looks like this:

QUERY CLASSES; There are 6 host classes:
Class1: #Untrusted Hosts and DNS Server
<Everything not explicitly listed in the other classes>
Class2: #NTP Server
64.15.175.5
Class3: #Trusted Network, including the Mail Server
128.30.40.[0-10]
128.30.40.[14-255]
Class4: #Web Servers
128.30.40.[11-12]
Classb: #Anomalous Host 128.30.40.13
128.30.40.13
Class6: #Anomalous Host 218.30.40.10
218.30.40.10

The policy map consists of a list of various classes of hosts, which corre-
spond to the different types of systems on the network. Each class consists
of a set of hosts with some common properties. Two hosts belong to the
same class if and only if any packet sent or received by one of them is
treated the same as if it had come from (or to) any of the others. If two
hosts are in different classes, there is some essential difference between
them in the firewall policy that distinguishes them from each other.

In the listing given here, each element of a class is given as an address or a
range of addresses. For instance, in class 4, the element 128.30.40.[11-12]
represents a set containing the addresses 128.30.40.11 and 128.30.40.12. A
brief inspection of the various classes enables you to easily identify their
members. For instance, class 2 corresponds to the external NTP server.
Class 3 represents the trusted hosts of the network. Class 4 represents the
Web servers of the network. Classes 5 and 6 are anomalous. Class 5 con-
sists of a decommissioned print server that no longer belongs on the net-
work. Class 6 is an artificial class caused by an error in the firewall. All
other hosts belong to class 1. For easier reference, we have added com-
ments to the output that identify each class.

Host
128.30.40.13

Web
Server 1

DNS

Server
Untrusted
Hosts

Server

Trusted
Clients

FIGURE 1: AN ITVAL NETWORK MAP

Figure 1 is a graphical depiction of the policy map. By inspecting the map
for anomalies, you can detect several important policy errors.

46 ;LOGIN: VOL. 32, NO. 1

;LOGIN: FEBRUARY 2007

Catching Typos

In a policy of more than a few dozen rules, there is a good chance that one
of the rules contains a typo. In the sample policy, a typo on line 6 prevents
SMTP traffic from reaching the mail server. The policy map immediately
highlights this error. Since 218.30.40.10 doesn’t correspond to any of the
important servers, the existence of class 5 is a clear indication of an error
in the policy. A search through the rule set for the address 218.30.40.10
uncovers the typo and allows us to patch the problem by transposing the
first two digits of the address. Repairing the problem gives us a new policy
map. The new map looks like this:

QUERY CLASSES; There are 5 host classes:
Class1: #Untrusted Hosts and DNS Server
<Everything not explicitly listed in the other classes>
Class2: #NTP Server
64.15.175.5
Class3: #Trusted Network, including the Mail Server
128.30.40.[0-10]
128.30.40.[14-255]
Class4: #Web Servers
128.30.40.[11-12]
Classb: #Anomalous Host 128.30.40.13
128.30.40.13

Detecting Outdated Rules

The new policy contains yet another anomalous class. Host 128.30.40.13
in class 5 of the new policy map does not correspond to any of our impor-
tant servers. Why has it been distinguished as a special class?

It is very easy to forget to change the firewall policy after altering the net-
work infrastructure. The sample policy contains rules for an experimental
print server that has been taken offline and no longer needs special protec-
tion from external hosts. In the meantime, the server’s IP address has been
reused as the address of a new workstation. As a result, the firewall makes
a distinction between that address and the other systems. Rule 5 of the
original policy, originally designed to protect the print server from untrust-
ed hosts, is now blocking network traffic to the new workstation. Remov-
ing the outdated rule from the policy resolves this issue and gives us the
following policy map:

QUERY CLASSES; There are 4 host classes:
Class1: #Untrusted Hosts and the DNS Server
<Everything not explicitly listed in other classes>
Class2: #NTP Server
64.15.175.5
Class3: #Trusted Network, including the Mail Server
128.30.40.[0-10]
128.30.40.[13-255]
Class4: #\Web Servers
128.30.40.[11-12]

Detecting Overly Broad Rules

Sometimes the easiest way to temporarily allow hosts to access an external
service is to open that service up to any external host. This is a bad prac-
tice which often leaves a network open to intrusions from untrusted hosts,

DEBUGGING A FIREWALL POLICY WITH POLICY MAPPING 47

48

;LOGIN: VOL. 32, NO. 1

but it is very convenient when bringing a new system online for the first
time. In the long run, however, it is usually much better to use a more spe-
cific rule that allows only trusted hosts to provide that service.

The DNS server does not appear in any of the classes explicitly listed in
the policy map. This is because the members of class 1, the “everything
else” class, have been hidden to save space. Counter to our expectations,
the DNS server has been lumped into this class with all of the untrusted
hosts. To permit DNS traffic only from the appropriate server, the firewall
policy ought to distinguish that server from other hosts outside the net-
work. The fact that the DNS server is grouped with untrusted hosts indi-
cates either that DNS traffic is allowed from any external host or that all
DNS traffic is blocked by the firewall.

Examining the firewall policy reveals an error in rules 1 and 2. Those rules
should grant DNS access only from the DNS server (128.30.1.128), and
not from other external hosts.

This error can be easily repaired by inserting the correct IP address into
each rule. DNS traffic will then be permitted only to the appropriate server.
Running ITVal on the new policy gives us a new policy map:

QUERY CLASSES; There are 5 host classes:
Class1: #Untrusted Hosts
<Everything not explicitly listed in the other classes>
Class2: #NTP Server
64.15.175.5
Class3: #DNS Server
128.30.1.128
Class4: #Trusted Network, including the Mail Server
128.30.40.[0-10]
128.30.40.[13-255]
Classb: #Web Servers
128.30.40.[11-12]

Detecting Shadowed Rules

Another common error is to create a rule in the policy that shadows other
rules. Since iptables considers rules in sequential order, a rule that accepts
or drops packets from an entire subnet will take precedence over a narrow-
er rule that occurs later in the chain. These shadowed rules can be easily
identified in the policy map.

In the policy map, the mail server does not have its own class. Instead it is
grouped with the trusted workstations on the network. This is a good sign
that one or more of the rules protecting the mail server has been shad-
owed. By looking through the rule set for rules corresponding to the mail
server and/or the trusted hosts, you can easily see that rule 4 shadows
rules 6 and 7. It turns out that the rule is unnecessary and can be deleted.
Removing the rule creates a new rule set with the following policy map:

QUERY CLASSES; There are 7 host classes:
Class1: #Untrusted Hosts
<Everything not explicitly listed in the other classes>
Class2: #NTP Server
64.15.175.5
Class3: #DNS Server
128.30.1.128
Class4: #Trusted Clients
128.30.40.[0-9]

;LOGIN: FEBRUARY 2007

128.30.40.[13-255]

Classb: #Mail Server
128.30.40.10

Class6: #Primary Web Server
128.30.40.11

Class7: #Secondary Web Server
128.30.40.12

The removal of rule 4 introduced two new classes into the policy map. As
expected, there is a new class containing the mail server. The class contain-
ing the Web servers has also changed. The erroneous rule hid some dis-
crepancies in how the two Web servers are treated by the firewall that need
to be addressed. Now that the rule has been removed, these errors have
become visible.

Detecting Missing Rules

In the new policy, the primary and secondary Web servers belong to sepa-
rate classes. Why is this? Rules 8, 9, and 10 allow HTTP access to both
servers, but they allow SSH access only to the secondary Web server. The
policy is missing a rule that would permit SSH access to the primary
server.

Inserting a new rule to fix this problem gives us the policy shown in Table
2, which has the following policy map:

QUERY CLASSES; There are 6 host classes:
Class1: #Untrusted Hosts
<Everything not explicitly listed in the other classes>
Class2: #NTP Server
64.15.175.5
Class3: #DNS Server
128.30.1.128
Class4: #Trusted Clients
128.30.40.[0-9]
128.30.40.[13-255]
Classb: #Mail Server
128.30.40.10
Class6: #Web Servers
128.30.40.[11-12]

Target Source Destination Port
1 ACCEPT 128.30.1.128 128.30.40.0/24 DNS
2 ACCEPT 128.30.40.0/24 128.30.1.128 DNS
3 ACCEPT 128.30.40.0/24 64.15.175.5 NTP
4 ACCEPT 128.30.40.0/24 128.30.40.10 SMTP
5 ACCEPT 128.30.40.0/24 128.30.40.10 IMAP
6 ACCEPT 128.30.40.0/24 128.30.40.11 SSH
7 ACCEPT 128.30.40.0/24 128.30.40.12 SSH
8 ACCEPT Anywhere 128.30.40.11 HTTP
9 ACCEPT Anywhere 128.30.40.12 HTTP

TABLE 2: A CORRECT FIREWALL POLICY

A graphical depiction of a map for the new policy is shown in Figure 2.
Both Web servers now belong to class 6. The map now conforms to our
expectations. There are separate classes for the mail server, the DNS server,
and the NTP server. The Web servers are grouped into a single class. The
set of trusted clients forms a group and all other systems are grouped as
untrusted hosts.

DEBUGGING A FIREWALL POLICY WITH POLICY MAPPING 49

50

;LOGIN: VOL. 32, NO. 1

Web
Server 1
Web
Server 2

Trusted Untrusted
Clients Hosts

FIGURE 2: MAP OF THE NEW POLICY

Penetration Testing

In addition to making certain kinds of policy errors immediately obvious,
the policy map can be used with other penetration testing techniques for
more comprehensive and accurate verification. Since the firewall treats all
hosts in a class the same, testing one address from each class gives com-
plete coverage of the entire firewall policy. For instance, when using nmap
[2] or hping2 [1] to search for unfiltered ports, it can be useful to use
source address spoofing to test that the firewall rejects packets from a vari-
ety of sources. Instead of using a randomly selected source address, you
can take one address from each class to be sure that all interesting behav-
iors of the firewall have been tested.

What If | Don’t Use iptables?

ITVal currently only parses iptables firewalls, but the general technique of
generating a policy map can be used with any type of firewall. A more
technical description of policy mapping can be found in the proceedings of
LISA "06 [6], which outlines the algorithm used to compute the various
classes of the policy map. A quick-and-dirty approximation to the policy
map can be created by listing all the addresses (and address ranges) explic-
itly mentioned in the firewall policy. While such a listing is far less precise
and useful than the policy map, it can reveal some of the behaviors uncov-
ered by the policy map and can provide a good sample of addresses to use
during penetration testing. You might also try converting your rule set into
an iptables policy using some of the scripts Bill Stearns has made available
on his Web site [8] (mileage will vary!).

Conclusion

Maintaining a well-tested and tightly configured firewall is an important
part of overall network security. Thanks to tools such as ITVal, it no longer
needs to be an arduous task. By periodically testing whether your firewall
policy conforms to your general expectations about the organization of
your network, you can quickly and easily identify and repair significant
firewall errors.

In addition to generating a policy map, ITVal provides many other useful
tools for detecting problems in your firewall, including various ways to test
for spoofing protection and to check whether viruses and Trojans can
access backdoors through your firewall. More information about ITVal is
available in the proceedings of Freenix '05 [5] and LISA 05 [4]. The tool
itself can be downloaded from http://itval.sourceforge.net.

;LOGIN: FEBRUARY 2007

REFERENCES

[1] P Bogaerts, HPING Tutorial, August 2003:
http://www.radarhack.com/dir/papers/hping2_v1.5.pdf.

[2] Fyodor, “The Art of Port Scanning,” Phrack 7, no. 51 (September
1997).

[3] Internet Security Systems, Internet Scanner User Guide Version 7.0 SP 2
(2005):
http://documents.iss.net/literature/InternetScanner/IS_UG_7.0_SP2.pdf.

[4] R. Marmorstein and P. Kearns, “An Open Source Solution for Testing
NAT’d and Nested iptables Firewalls,” in 19th Large Installation System
Administration Conference (LISA ’05) (December 2005), pages 103-12.

[5] R. Marmorstein and P. Kearns, “A Tool for Automated iptables Firewall
Analysis,” in FREENIX Track: 2005 USENIX Annual Technical Conference
(April 2005), pages 71-82.

[6] R. Marmorstein and P. Kearns, “Firewall Analysis with Policy-based
Host Classification,” in 20th Large Installation System Administration
Conference (LISA °06) (December 2000).

[7] A. Mayer, A. Wool, and E. Ziskin, “Fang: A Firewall Analysis Engine,”
in Proceedings of the IEEE Symposium on Security and Privacy (May 2000).

[8] B. Stearns, http://www.stearns.org/.

[9] A. Wool, “Architecting the Lumeta Firewall Analyzer,” in Proceedings of
the 10th USENIX Security Symposium (August 2001).

DEBUGGING A FIREWALL POLICY WITH POLICY MAPPING 51

