DAVID BLANK-EDELMAN

practical Perl tools:
Spawning

David N. Blank-Edelman is the Director of Technology
at the Northeastern University College of Computer
and Information Science and the author of the book
Perl for System Administration (O'Reilly, 2000). He has
spent the past 20 years as a system/network admin-
istrator in large multi-platform environments, in-
cluding Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He was the
program chair of the LISA o5 conference and was
one of the LISA 06 Invited Talks co-chairs.

dnb@ccs.neu.edu

AS THE PARENT OF A NEW BABY, I'VE
really come to appreciate the idea of multi-
tasking. Remind me to tell you about the
times I've successfully fed my child from a
bottle while simultaneously going to the
bathroom and petting a cat that asserted it
could not live another moment without
some attention. (Ok, maybe | won't tell you
about them, though wouldn't that make a
swell column?) Having the number of unin-
terrupted time slots shrink considerably
since our child was born has made me a
fan of things in the Perl world that help get
tasks done more quickly or efficiently.
Multitasking is one of those techniques,
and that’s just what we're going to talk
about in today’s column.

Fork()ing

;LOGIN: VOL. 32, NO. 1

52

Let’s start out with one of the basic building
blocks of most multitasking Perl code: fork()ing.
The fork() function comes from the UNIX system
call of the same name, though it works on most
other operating systems as well. This now in-
cludes Windows operating systems, thanks to
work in 1999 by ActiveState that Microsoft itself
sponsored.

Here’s a quick review of fork() for those of you
who didn’t grow up teething on (or perhaps even
loading) the V7 magtapes. When you call fork()
from a Perl program, a copy of the running
process is made. This copy receives all of the con-
text of the program that called fork(), including the
run-time environment, any variables in play at the
time, and open file handles. The new process is
called the “child process” with the original one
dubbed the “parent process.” Since the program
that called fork() continues to run in both the
child and the parent processes it is up to your
code to ensure that the child process knows to do
childlike things (processing something, etc.) and
that the parent acts parental (e.g., creating new
children or waiting for existing children to finish).

How does your code know whether it is running
as the child or the parent process? Almost every-
thing about the two running processes is the
same. The key difference is that the parent
receives back the pid of the child spawned by
fork() as a return code from that fork() call. The

;LOGIN: FEBRUARY 2007

child receives a 0 from the same call. This leads to the following idiom you
see in most code that uses fork():

my $childpid = fork();
die “Fork failed:$"\n" if !defined $childpid; # fork returns undef on failure

if $childpid == 0, we are in the child process and need to do stuff
if ($childpid == 0) { ... do stuff }

we're the parent and so we need to reap the fork()d process when done
else {

waitpid waits for a particular pid vs. wait() which will

reap any child process that has completed

waitpid($childpid,0);
}

A parent process must retrieve the exit status of all of its children once
they have completed, a process known as “reaping,” or the child processes
continue to live on as “zombies” until the parent process dies. Reaping is
performed by wait() or waitpid() as seen in the code above. The waitpid()/
wait() functions will (you guessed it!) wait until the child in question has
finished before returning.

Warning: Because we have a student fork-bomb one of our machines at
least once or twice a year (mostly unintentionally) I feel compelled to
mention that code that either looks like, acts like, or boils down to this:

while (1) { fork(); } # bad bad bad bad

is, as the comment says, bad bad bad bad. A program that fork()s out of
control like this is a fork-bomb. If process limits allow (e.g., Solaris
defaults; see the maxuprc kernel parameter) this program will consume all
available spots in your process table, causing the system to melt down and
be a real pain to clean up to boot. If you are going to write code that
repeatedly fork()s, always build in some kind of big red button to shut the
process down, for example:

while (1) { fork() unless (-f /tmp/stop); } # create /tmp/stop to end
or impose limits to keep the problem self-quashing:
while (1) { die “Over the fork limit"” if $limit++>100; fork(); }

With this little snippet we've covered all of the basics you have to know to
begin programming using fork(). Toward the end of the column we’ll see an
easier way to use this functionality.

Basic Threading

The second simple method for multitasking involves threading. Before we
go much further I want to insert a number of caveats about threading
under Perl:

1. Thread support is comparatively new to Perl. Actually, it is more accu-
rate to say that this kind of thread support is new to Perl. There was an
attempt in the past (around Perl 5.005 or so) to add threads but that
model never proved to be stable and was eventually moved to “depre-
cated” status and will leave the code as fast as the Perl 5 developers
can get it out (with version 5.10, as I understand it). Support for the
current model looks pretty good and is under active maintenance, so
you probably don'’t need to worry. Still, I want you to know that the

PRACTICAL PERL TOOLS: SPAWNING 53

54

;LOGIN: VOL. 32, NO. 1

ground around this issue is a little softer than usual, so you'll need to
step carefully. Things such as debugger support for threads are still a
little shaky (better in 5.8.5+ but still incomplete), but threads are defi-
nitely usable today.

2. Perl threads are likely to be different from any of the other threading
models you have seen before. They are not your granpappy’s light-
weight processes or precisely any other thread implementation you've
encountered before. We'll talk about what they are, but I thought it
best to prime you for what they are not first.

3. To use the current threading model, your Perl interpreter has to be
built with a special option at compile time. This is not enabled by de-
fault in a source build, and different OS vendors are more or less ad-
venturous. For example, until Solaris 10 Sun did not have it turned on
in the Perl interpreter that ships with Solaris; Apple does turn it on for
OS X. To tell if you have it enabled, look for the line that contains usei-
threads= in the output of perl -V. If it says define you are all set. If it
says undef, then you will have to rebuild the interpreter. As a related
aside, there is a module called forks that provides the same API as the
threads module we’ll be using but does it using fork() calls. If you'd like
to play with the threads stuff on an OS that doesn’t provide a threaded
Perl but does support fork() natively, this module may do the trick for
you.

If you are still with me after passing the “Danger, This Means You!” para-
graphs above, it means you are interested in how threads work in Perl.
Lets look at that now. Modern versions of Perl, when enabled at compile
time, provide something called “interpreter threads” or “ithreads” for
short. I'll use “thread” and “ithread” to mean the same thing in this col-
umn.

A standard Perl program gets run by a single Perl interpreter thread that
handles the interpretation and execution of a program from start to finish.
Perl threads allow you to start up additional Perl interpreters that inde-
pendently execute parts of your code. Each interpreter thread gets its own
copy of the state of the Perl program at that point. If this sounds to you a
little bit like a fork() situation we’ve already covered, that shows you are on
the ball.

One difference from fork() is the ability to actually share data between
threads. With fork(), the children get a copy of all of the variables in play
but changes made by a child aren’t seen in the parent’s copy unless they
work out some sort of external synchronization mechanism. With ithreads,
the situation is a little different. By default, ithreads don’t actually share
any data; the copies they have of the program’s state are completely inde-
pendent. However, if you'd like two ithreads to share access to a variable,
you do have the ability to mark that variable as shared using a separate
pragma. A shared variable can be changed by one thread and all other
threads will see this change as well. This provides considerable power to
the programmer but also potential peril, since reading and writing to a
shared resource need to be carefully coordinated. Let’s take a look at some
sample code and then we'll see how such issues are addressed in Perl.

use threads;

sub threaded_sub {
print “running in thread id: “ . threads->self->tid() . “\n";

}
my $thread = threads->create(\&threaded_sub);

;LOGIN: FEBRUARY 2007

this shows a scalar return result, but we could also pass a list
my $result = $thread->join;

This code shows nearly the simplest use of ithreads I can demonstrate. To
use ithreads, we define a subroutine whose code will be executed in a
thread. As a thread is created, it is assigned an id (with the main or initial
thread when the program first runs being called thread id 0). The thread
being created here isn't particularly exciting, since it only prints its id and
then exits, but you get the idea.

The create() line takes that code and spins off a new thread to run it. At
that point the subroutine threaded_sub is happily executing in a separate
thread. The result of the create() command is a thread object we can use
for thread control operations. The next line executes one of these opera-
tions called join(), a method similar in intent to wait()/waitpid() from our
fork examples. join() waits for the desired thread to complete and retrieves
the return value from that thread. If we did not include the join() statement,
Perl would complain when the program exits leaving behind an unjoined
thread:

Perl exited with active threads:
0 running and unjoined
1 finished and unjoined
0 running and detached

If we didn’t care at all about the results of that thread, we could replace the
method join() with one called detach().

Now let’s get a bit more sophisticated. I mentioned before that different
threads do not share the same data unless explicitly instructed to do so.
That sharing is performed by adding the threads::shared pragma and mark-
ing certain variables with this status:

use threads;
use threads::shared;

my $data : shared = 1; # share($data) can also be used
now all threads will read and write to the same variable

Congratulations: With this step we’ve now stepped onto the rickety bridge
over the deadly gorge of Parallel Programming Peril (cue the dramatic allit-
eration music)! With race conditions and other nasty beasts waiting for us
at the bottom of the gorge we have to step very carefully. As soon as you
begin to deal with a shared resource, you need to make sure that the right
piece of code updates that resource at the right time. The other pieces of
code running at the same time must also follow the right protocol to avoid
having that update get inadvertently overwritten. To deal with these cir-
cumstances Perl offers a set of functions such as locki).

As you can probably guess, lock() attempts to place a lock on a variable and
blocks until it succeeds. It’s useful when several threads want to modify a
shared value:

{ lock($data); $data++; }

Why use curly braces in that example? Perl’s threading model has no func-
tion called “unlock()”; locks are released when they pass out of scope. By

using curly braces around these statements we’ve set up a temporary scope
that just includes the update to the variable $data after the lock is in place.

There are other idioms for thread programming that avoid doing this sort
of dance. I don’t want to go too deeply into parallel programming tech-
niques, but this one bears a quick look because it comes up so frequently.

PRACTICAL PERL TOOLS: SPAWNING 55

56

;LOGIN: VOL. 32, NO. 1

Here’s a modified version of the example used in the official Perl threads
tutorial (perldoc perlthrtut):

use threads;
use Thread::Queue;

my $DataQueue = Thread::Queue->new;
$thr = threads->create(
sub {
while (defined($DataElement = $DataQueue->dequeue)) {
print “Thread “
. threads->self->tid()
. " popped $DataElement off the queue\n”;
}
print “Thread “ . threads->self->tid() . “ ready to exit\n";

);

print “Thread “ . threads->self->tid() . “ queues 12\n";
$DataQueue->enqueue(12);

print “Thread “ . threads->self->tid() . “ queues A, B and C\n";
$DataQueue->enqueue(“A"”, "B", "C"),

print “Thread “ . threads->self->tid() . “ queues undef\n”;
$DataQueue->enqueue(undef);
$thr->join;

Let’s go over the code in some detail, because it might not be immediately
clear what is going on. First, we create a queue for the two threads we are
going to use to share. One thread will place new values at the end of the
queue (enqueue()); the other will grab values from the top of the queue
(dequeue()) to work on. By using this scheme the threads don’t have to
worry about bumping into each other.

After creating a queue, the second thread (i.e., the one that is not the main
thread) gets defined and launched via the create command. The subroutine
defined in this command just attempts to pop a value off the queue and
print it. It will do this for as long as it can retrieve defined elements from
the queue. It may not be readily apparent from the code here, but when
faced with an empty queue, dequeue() will sit patiently (block/hang), wait-
ing for new items to be added. Think of the second thread as always waiting
for new elements to appear in the queue so it can retrieve and print them.

The rest of the program takes place in the main thread while the second
thread is running. It pushes several values onto the queue: the first a
scalar, the second a list, and the third an undefined value. It ends with an
attempt to join the second thread. The net result is that the code prints
something like this:

Thread 0 queues 12

Thread 0 queues A, B and C
Thread 0 queues undef

Thread 1 popped 12 off the queue
Thread 1 popped A off the queue
Thread 1 popped B off the queue
Thread 1 popped C off the queue
Thread 1 ready to exit

This looks like all of the action first takes place in the main thread (0) fol-
lowed by the second thread’s work, but that’s just the order the output is
received. If you step through the main thread with a debugger, you'll find
that the main thread will queue a value, the second thread prints it, the

main thread queues another value, the second thread prints it, and so on.
Thread::Queue has its limitations (some of which are solved by other mod-
ules), but in general it provides a fine way to pass things around among
threads that all have to coordinate tasks.

Now that you know about queues, we've finished a good surface look at
threads in Perl. Be sure to see the documentation for the threads and
threads::shared pragmas and the Perl thread tutorial (perlthrtut) for more
information on other available functionality.

Convenience Modules

We could spend a lot more time talking about threads, but I want to make
sure I mention one more topic before we come to an end. As you probably
guessed, Perl has its share of modules that make working with fork() and
threading a little easier. Let me show you one that 'm particularly fond of
using: Parallel::ForkManager.

I like Parallel::ForkManager because it makes adding parallel processing to
a script easy. For example, I have a script I use when I want to rsync the
individual directories of a filesystem to another destination. I use this in
cases where it is necessary to copy over each subdirectory separately for
some reason. Here are some choice pieces from the code:

opendir(DIR, $startdir) or die “unable to open $startdir:$\n";
while ($_ = readdir(DIR)) {

next if $_eq ".";

next if $_eq "..";

push(@dirs, $_);
}

closedir(DIR);

foreach my $dir (sort @dirs) {
(do the rsync);
}

One day I realized that directory copies like this don’t have to take place
serially. Several directories can be copied simultaneously with no ill effects.
Adding this parallel-processing functionality was just a matter of changing
the code that said:

foreach my $dir (sort @dirs) {
(do the rsync);
}

to:

run up to 5 copy jobs in parallel
my $pm = new Parallel::ForkManager(5);

foreach my $dir (sort @dirs){
->start returns O for child, so only parent process can start new
children, once we get past this line, we know we are a child process
$pm->start and next;

(do the rsync);

$pm->finish; # terminate child process

}
$pm->wait_all_children; # hang out until all processes have completed

The added code creates a new Parallel::ForkManager object that can be

;LOGIN: FEBRUARY 2007 PRACTICAL PERL TOOLS: SPAWNING 57

58

;LOGIN: VOL. 32, NO. 1

used to fork a limited number of child processes (->start), have them exit
at the right time (->finish), and then clean up after all children with one
command (->wait_all_children). The module does all of the scut work
behind the scenes necessary to keep only a limited number of fork(led
processes going. I find the ease of adding parallel processing to my scripts
(just four lines of code) has made me much more likely to create scripts
that handle several tasks simultaneously. There are other convenience
modules that are worth looking at (e.g., Parallel::Forker does all that
Parallel::ForkManager can do, but it allows you to specify that certain
child processes must wait to run after others have completed). Be sure to
do searches for “fork,” “parallel,” and “thread” at search.cpan.org to see
what is available. If you find yourself needing a really sophisticated multi-
tasking framework, you'd be well served to check out the POE framework
at poe.perl.org.

Oops, I have to go back to getting many, many things done at the same
time. Take care, and I'll see you next time.

