
; LO G I N : AUGUST 201 0	 D O N ’ T TA K E L ATE X F I LES FROM STR A N G E R S	 17

S T E P H E N C H E C K O W AY, H O V A V
S H A C H A M , A N D E R I C R E S C O R L A

Don’t take
LaTeX files from
strangers
Stephen Checkoway is a PhD student at
UC San Diego. He works with Professors
Shacham and Savage on embedded systems
security, including electronic voting and
automotive security.

s@cs.ucsd.edu

Hovav Shacham is an assistant professor in
the Department of Computer Science and
Engineering at the University of California,
San Diego. His research interests are in ap-
plied cryptography, systems security, and
tech policy.

hovav@cs.ucsd.edu

Eric Rescorla is a principal engineer at Skype.
His research interests include communica-
tions security, the economics of vulnerabili-
ties, and electronic voting.

ekr@rtfm.com

T E X , L AT E X , A N D B I B T E X F I L E S A R E
a common method of collaboration for
computer science professionals. It is widely
assumed by users that LaTeX files are safe;
that is, that no significant harm can come
of running LaTeX on an arbitrary computer.
Unfortunately, this is not the case. In this
article we describe how to exploit LaTeX to
build a virus that spreads between docu-
ments on the MiKTeX distribution on Win-
dows XP as well as how to use malicious
documents to steal data from Web-based
LaTeX previewer services.

I wrote out what I thought I would like to
type—how my electronic file should look. And
then, I said, OK, that’s my input, and here’s my
output—how do I get from input to output?
And for this, well, it looks like I need macros.

—Donald Knuth [9]

Donald Knuth’s TeX is the standard typeset-
ting system for documents in mathematics and
computer science. However, like many other text
processing systems designed by computer scientists
(PostScript, troff, etc.), what it really is is a general-
purpose programming language specialized for
typesetting documents. This is a fact that most TeX
users don’t think about much, and they (we) tend
to treat TeX documents the way they would treat
text files—as something inherently safe. Many a
user who would never consider downloading and
running a random program off the Internet doesn’t
think twice before feeding arbitrary data into his
local copy of LaTeX.

TeX is extremely (legendarily) wel designed: Knuth
actually gives out cash rewards to people who find
bugs, and has made only a few minor changes to
TeX in the last decade [3]. As one would expect,
TeX generally restricts the functionality that docu-
ments and the macros they define can invoke.
Nevertheless, it allows macros to read and write
arbitrary files. This single capability turns out to
be enough to allow a carefully crafted document
to completely escape TeX’s sandbox. As a demon-
stration, we present a TeX virus that affects recent
MiKTeX distributions on Windows XP, and that,
with no user action beyond compiling an infected
file, spreads to other TeX documents in the user’s
home directory. Our proof-of-concept virus carries
no malicious payload beyond replicating itself, but
it could just as easily download and execute bina-
ries or undertake any other action.

18	 ; LO G I N : VO L . 35, N O. 1

The vulnerabilities exposed by TeX’s file-I/O capabilities extend beyond a user’s
personal computer. TeX is the lingua franca of mathematics and the mathematical sci-
ences; its notation is frequently used even in communication (e.g., in email between
collaborators) that isn’t meant to be run through the TeX program. And TeX does such
a good job of formatting mathematical formulae (and other programs do such a bad
job) that it’s common to write one’s formulae in TeX, render them into images, and
then embed them into a Web page, a Word document, or a PowerPoint presentation.
A large number of Web-based TeX previewers exist to facilitate the process of turn-
ing TeX equations into an embeddable image or PDF. Unfortunately, many of these
previewers fail to properly isolate the TeX program, with the result that it is possible
merely by sending them a malicious document to remotely download sensitive infor-
mation such as the documents rendered by previous users or even—under the right
conditions—the remote system’s password file. Even here, the danger is potentially
more widespread. Because the TeX core has not changed for many years, which makes
TeX an archival format, many archive services, such as Cornell University’s popular
arXiv.org, accept submissions in TeX, which they compile to produce PDFs.

It is important to realize that the file I/O capabilities at the heart of the vulnerabili-
ties we identify are not bugs in TeX; rather, they are intended capabilities exposed
by TeX’s macro language that were not fully understood and accounted for by the
designers of larger systems (such as online previewers) of which TeX is a compo-
nent. In this way the vulnerability is of a different kind than the programming error
frequently reported in image-handling software (including, in one notorious example,
Microsoft Windows’ handling of animated cursor files [6]), in which insufficient
validation by the program of attacker-supplied input leads to memory corruption and
arbitrary code execution. No such programming errors are known in TeX, though
Knuth, writing recently, did not disclaim their existence [3]:

Let me also observe that I never intended TeX to be immune to vicious “cracker at-
tacks”; I only wish it to be robust under reasonable use by people who are trying
to get productive work done. Almost every limit can be abused in extreme cases,
and I don’t think it useful to go to extreme pain to prevent such things. Computers
have general protection mechanisms to keep buggy software from inflicting serious
damage; TeX and MF are far less buggy than the software for which such mecha-
nisms were designed.

We believe that there are two important lessons to draw. First, one must be cau-
tious about which TeX and LaTeX files one compiles. This is actually harder than
it sounds: While most people don’t routinely compile LaTeX source from untrusted
sources, they do compile BibTeX entries. For instance, ACM Portal provides BibTeX
entries for each of its articles. Because BibTeX entries can (surprise!) contain LaTeX
code, this is equally dangerous and much harder to verify, especially if you download
large bibliography files such as Joe Hall’s well-known election auditing bibliogra-
phy [2]. This brings us to the second lesson: Executable code is everywhere, even in
formats that you would expect just to be passive data. And because it’s so difficult
to build an effective sandbox, our intuitions about what formats are inert (and hence
safe) can lead us very far astray.

How to Write a TeX Virus

In this section we show how to write a virus that is carried in a TeX file. As ex-
plained above, our virus is made possible by the file output capability exposed to TeX
documents. Unlike other modern distributions of TeX, MiKTeX, the most common
TeX distribution for Windows, places no meaningful restrictions on this capability.

Given the ability to overwrite system files, it is not surprising that TeX documents
can compromise the security of the system on which they are compiled. For concrete-
ness, we focus on one convenient target: on Windows XP, a JScript file written to a

; LO G I N : AUGUST 201 0	 D O N ’ T TA K E L ATE X F I LES FROM STR A N G E R S	 19

user’s Startup directory will be executed by the Windows Script Host facility at login;
the Windows Script Host exposes COM objects to scripts that allow easy manipula-
tion of the filesystem.

Our JScript startup script, when run on the user’s next login, seeks out other LaTeX
files on disk and infects them with our virus. The virus lifecycle is summarized in
Figure 1.

F I G U R E 1 : L A T E X V I R U S L I F E C Y C L E

WRITING THE MALICIOUS FILE

Writing the malicious JScript file is conceptually simple. The TeX write primitive
allows us to write data to a file, like so: \write\file{foo} Since we have the malicious
JScript embedded in our document, we can just write it to disk. However, there
is one technical hurdle that must be overcome in order to write to the Startup direc-
tory: the full path of the directory is C:\Documents and Settings\Administrator\
Start Menu\Programs\Startup, but TeX does not ordinarily allow spaces in file paths
(this does not appear to be a security feature, just a functional defect). However, we
can leverage Windows’ compatibility with older programs that expect file and direc-
tory names in 8.3 format. For example, Start Menu can be specified as STARTM~1.
This mechanism allows us to bypass the path restriction.

In addition to the JScript file, we also write a copy of the virus to the disk at an
easily accessible location, for use by our JScript in viral spread. For convenience, we
just write the entire original document, virus and all. For this, we take advantage
of the fact that the TeX engine used in MiKTeX—and indeed in all modern TeX dis-
tributions—is pdfTeX, which contains the ε-TeX extension \readline [7]. We use
\readline to read the document being compiled line by line and write an exact
copy to C:\WINDOWS\Temp\sploit.tmp.

The complete source for the TeX portion of our virus is given in Listing 1. We give
the details of how it accomplishes the tasks listed above in our LEET ’10 paper [1].

%%%%SPLOIT%%%%
{\newwrite\w\let\c\catcode\c`*13\def*{\afterassignment\d\count255”}\def\d{%
\expandafter\c\the\count255=12}{*0D\def\a#1^^M{\immediate\write\w{#1}}\c`̂ ^M5%
\newread\r\openin\r=\jobname \immediate\openout\w=C:/WINDOWS/Temp/sploit.tmp
\loop\unless\ifeof\r\readline\r to\l\expandafter\a\l\repeat\immediate\closeout
\w\closein\r}{*7E*24*25*26*7B*7D\immediate\openout
\w=C:/DOCUME~1/ADMINI~1/STARTM~1/PROGRAMS/STARTUP/sploit.js \c`[1\c`]2\c`\@0
\newlinechar`\^^J\endlinechar-1*5C@immediate@write
@w[fso=new ActiveXObject(“Scripting.FileSystemObject”);foo=^^J
<11 lines of JScript omitted>
f(fso.GetFolder(“C:\\Documents and Settings\\Administrator”));}m();]
@immediate@closeout@w]}%
%%%%SPLOIT%%%%

L I S T I N G 1 : T H E L A T E X C O M M A N D S T H A T C R E A T E T H E S P L O I T . T M P F I L E ; T H E
J S C R I P T C O D E H A S B E E N O M I T T E D .

20	 ; LO G I N : VO L . 35, N O. 4

SPREADING THE DISEASE

The second phase, written in JScript, is automatically executed by Windows when
the user next logs in. It reads the sploit.tmp file, extracts from it the TeX virus code,
finds all the files in the Administrator directory with the extension .tex, and appends
the virus onto each of them. To manipulate the filesystem, it instantiates Microsoft’s
convenient FileSystemObject, which exposes a programmatic interface for filesystem
search and manipulation.

In total, the virus requires two marker lines and 21 80-column lines of TeX. Listing 1
omits most of the JScript, in the interests of not providing a complete, working virus;
but the remaining code is straightforward and we have tested it in our own systems.

We stress that JScript code run from the file system is unsandboxed. Our virus could
manipulate the file system however it wishes, or download an arbitrary program from
the Internet and cause it to be executed. The damage caused by the vulnerability
could in principle be far greater than just modifying LaTeX files on disk.

APPLICATIONS OUTSIDE WINDOWS

While Windows is the easiest platform to exploit, exploits on other platforms are
possible as well. As an example, consider the TeX Live distribution popular on UNIX
platforms (including Mac OS X). Like MiKTeX, TeX Live allows any file to be read.
Unlike MiKTeX, in its default configuration TeX Live prohibits TeX documents from
writing to “dotfiles” (files whose names start with a dot, such as ~/.login, the user
startup script for Bourne-derived shells) or files not in its current directory or subdi-
rectories.

Even with these restrictions, however, there may be avenues for attack. For instance,
if a makefile is being used to run LaTeX, then the attacker can overwrite it, inducing
arbitrary behavior the next time the make program is run. In addition, the popular
Emacs-based TeX editing environment AucTeX writes Emacs Lisp cache files to the
local directory; an attacker who overwrites these files can execute arbitrary Lisp
code inside Emacs, which itself is Turing-complete and unsandboxed. (For an earlier
example of a TeX virus that used Emacs for propagation, see [4].)

Attacks on Previewers

We now turn our attention to a slightly harder target. There are more than a dozen
Web-based services that compile LaTeX files on users’ behalf and make the result-
ing PDFs available. While some of the operators of these sites seem to be dimly
aware that attacks may be possible, in nearly every case we were able to read server
files remotely and, in many cases, to write loops that could be used for denial of
service via resource consumption. The one previewer we were unable to attack,
MathTran [8], uses Secure plain TeX, a reimplementation of plain TeX that prevents
using any control sequence other than those meant for typesetting.

We have designed successful exfiltration and denial of service attacks on most of the
LaTeX previewer services we studied. Moreover, the filtering mechanisms devised by
these services were largely ineffective against our attacks. We disclosed the vulner-
abilities of the affected services we found to the operators, with universally posi-
tive responses. As a result, a number of operators changed their security policy or
removed the previewer altogether.

In the rest of this section we describe some of the details of our attacks.

EXFILTRATING DATA

Our key insight is this: any data that can be read by the TeX script being compiled
can be incorporated into the PDF file that is its output. When that PDF file is made

; LO G I N : AUGUST 201 0	 D O N ’ T TA K E L ATE X F I LES FROM STR A N G E R S	 21

available to the attacker, he can read it to recover the data. A data exfiltration vulner-
ability is thus created whenever Web-based TeX previewers allow scripts to read files
on disk that are not otherwise made public by the Web server.

This attack can be implemented in a number of ways. The most obvious way uses
input to interpolate the text of the file being read into the TeX input and hence the
output document. A minor problem with this approach is that it loses line breaks in
the input file, since TeX will treat them as spaces in the usual manner. To avoid this,
we can instead use the ε-TeX \readline extension, as we did in our virus. Using this
(rarely-used) control sequence also evades any blacklisting of input by the preview
service’s developers.

In principle, the procedure is straightforward. Our malicious TeX program opens the
sensitive file for reading and, in a loop, reads and typesets each line. When the pre-
view service displays the output in the attacker’s browser, the contents of the sensitive
file are exposed.

For the preview services we examined, the procedure was, in some cases, slightly
more complicated. The first barrier to overcome is that many of these previewers are
designed to typeset a single equation, and, as a consequence, interpolate the user
input into a mathematics environment in an otherwise-complete LaTeX document for
processing. Similar to basic SQL injection attacks, this attack requires the attacker to
escape math mode to perform some operations. A further barrier is that some of the
preview services explicitly disallow some control sequences, such as \input or
\include—rightly recognizing their potential for misuse. This is a very natural de-
fense; however, the availability of other macros for file I/O and the malleability of
LaTeX code make possible a host of techniques for defeating blacklist or whitelist
filters, ranging from using equivalently powerful internal LaTeX macros to exploit-
ing the way TeX parses its input and, in particular, how it decides what is a control
sequence. Again, see our paper [1] for more details.

DENIAL OF SERVICE

Any previewer that allows the TeX looping construct \loop...\repeat or the definition
of new macros is at risk of a denial of service attack. One can create a simple loop:

\ loop\iftrue\repeat

or one can define a recursive macro such as:

\def\nothing{nothing}

In the absence of imposed resource limits, enough such loops executed in parallel will
slow the server machine to a crawl and no more useful work will be possible until
the processes are killed. One extension of this attack is to cause TeX to produce very
large files, potentially filling up the disk.

The Origins of Insecurity in the Breakdown of the Code/Data Distinction

The vulnerabilities described in the previous sections are examples of a much broader
problem: the big shift toward active content. It’s common to think of there being a
sharp distinction between “code” and “data”: code expresses behavior or functionality
to be carried out by a computer; data encodes and describes an object that is concep-
tually inert and is examined or manipulated by means of appropriate code. Programs
(Web browsers, word processors, spreadsheets, etc.) are code. Documents (Web
pages, text documents, spreadsheet files, etc.) are data, and data is safe.

This distinction is increasingly false. All of the “document” formats mentioned above
routinely contain active content (JavaScript, macros, etc.) which is run in the context
of whatever program you use to work with the data. When those programs do not

22	 ; LO G I N : VO L . 35, N O. 4

properly sandbox the active content, then viewing a seemingly inert document can be
just as dangerous as directly executing a program from an unknown source. For ex-
ample, PDF files can embed JavaScript, which allows PDF files that include malicious
JavaScript to exploit bugs in Adobe’s Acrobat; by one report [5], some 80% of exploits
in the fourth quarter of 2009 used malicious PDF files. Unfortunately, as long experi-
ence has shown, proper sandboxing is very hard.

The insecurity we have identified in TeX is one more example of the weakness of this
kind of thinking. In TeX, we have a piece of extremely well written software designed
for a superficially safe activity (text processing). What’s more, whereas PDF files and
most other media formats are binary and opaque, the input file formats associated
with TeX are all plaintext and thus, naïvely, transparent and auditable. Nevertheless,
executing TeX files from untrustworthy sources is fundamentally unsafe: compiling a
document with standard TeX distributions allows total system compromise on Win-
dows and information leakage on UNIX. Simply put, every time you compile someone
else’s LaTeX file or cut and paste a BibTeX entry from a Web site, you are engaging
in unsafe computing. Note that the LaTeX source for this article is available from the
authors upon request.

You would do well, as Knuth suggested, to avail yourself of those operating-system
protection mechanisms designed “to keep buggy software from inflicting serious dam-
age.”

REFERENCES

[1] Stephen Checkoway, Hovav Shacham, and Eric Rescorla, “Are Text-Only Data For-
mats Safe? Or, Use This LaTeX Class File to Pwn Your Computer,” Proceedings of LEET
’10, USENIX, April 2010.

[2] Joseph Lorenzo Hall, “Election Auditing Bibliography,” version 3.8, February 2010:
http://josephhall.org/eamath/bib.pdf and http://josephhall.org/eamath/eamath.bib.

[3] Donald E. Knuth, “The TeX Tuneup of 2008,” TUGboat, vol. 29, no. 2, 2008, pp.
233–38: http://www.tug.org/TUGboat/Articles/tb29-2/tb92knut.pdf.

[4] Keith Allen McMillan, “A Platform-Independent Computer Virus,” master’s thesis,
University of Wisconsin—Milwaukee, April 1994: http://vx.netlux.org/lib/vkm00.
html.

[5] ScanSafe, “Annual Global Threat Report, 2009”: http://www.scansafe.com/
downloads/gtr/2009_AGTR.pdf.

[6] Alexander Sotirov, “Windows ANI Header Buffer Overflow,” March 2007: http://
www.phreedom.org/research/vulnerabilities/ani-header/.

[7] Hàn Thế Thành , Sebastian Rahtz, Hans Hagen, Harmut Henkel, Paw Jackowski,
and Margin Schröder, “The pdfTeX User Manual,” January 2007: http://www.tug.org/
texmf-dist/doc/pdftex/manual/pdftex-a.pdf.

[8] The Open University, “MathTran” (online translation of mathematical content):
http://mathtran.open.ac.uk.

[9] Christina Thiele, “Knuth Meets NTG Members,” MAPS, vol. 16, March 13, 1996,
pp. 38–49: http://www.ntg.nl/maps/16/15.pdf.

