
B O L I , E L E N A R E S H E T O V A , A N D
T U O M A S A U R A

Symbian OS
platform
security model
Bo Li is a second-year student in the master’s
program in security and mobile computing
at Aalto University, Finland. He got his bach-
elor’s degree in communications engineering
in 2008 from Fudan University, China.

Bo.Li@tkk.fi

Elena Reshetova is a senior security engineer
at Nokia, as well as a postgraduate student
at Aalto University. She is interested in
various research areas related to platform
security, security aspects of networking, and
cryptography.

elena.reshetova@nokia.com

Tuomas Aura is a professor at Aalto Uni-
versity, Finland. His research interests are
security and privacy in communications
networks and online services.

tuomas.aura@tkk.fi

; LO G I N : AUGUST 201 0	 SYM B I A N OS PL ATFO R M SECU RIT Y MO D E L	 23

T H E S Y M B I A N O S B E C A M E F U L LY O P E N
sourced in February 2010, which opens even
more possibilities for application develop-
ers to understand and analyze its security
solution. We present a short introduction
to the software features of Symbian plat-
form security: three trust tiers, capability
model, data caging, and the Symbian signed
process. We also try to compare the security
solution with the classical design principles
in this area, as well as briefly discuss gen-
eral design challenges and potential weak-
nesses.

Introduction

With the development of mobile devices and mo-
bile computers, more and more people rely strongly
on them. People use mobile devices and mobile
computers to arrange their schedules, contact each
other, process emails, and share rich media con-
tent. People believe it is safe to do so because it
feels secure just knowing it is “right there with
you” [8]. But, in fact, even their manufacturers
agree that all mobile devices are facing various se-
curity threats and attacks [3]. Moreover, the more
widespread the phone’s operating system is, the
higher the risk that it will be targeted by attackers,
especially if it allows execution of third-party ap-
plications. According to Symbian site information,
over 80 million devices running Symbian OS were
sold in 2009 [7]. The public development tools for
the Symbian platform have been easily accessible
for a long time, and Symbian also supports execu-
tion of add-on applications. So the Symbian OS
had and still has a strong need for a well-designed
security solution.

Despite the fact that modern smartphones operate
like minicomputers, several characteristics suggest
that their security solutions cannot be the same as
the general security solutions for PCs.

Compared with the users of computers, the users
of mobile devices have some particular expecta-
tions. People believe they should be able to make
an emergency call whenever necessary. This
means that, no matter how many applications are
running, the mobile phone must have very high
reliability; people also do not wish to restart their
mobile phones every day as they do with desktop
computers. This requires the mobile OS to be very
stable. And although it seems more and more nec-
essary to install antivirus software on smartphones

24	 ; LO G I N : VO L . 35, N O. 4

now [13], most users still do not expect to install any antivirus application
on a mobile device, at least not to have to install it themselves.

Alongside these particular expectations from users, the mobile device itself
has some constraints which should be taken into account when designing a
security architecture. This is mainly due to the limitations, especially when
compared with computers, of the mobile devices’ hardware: low process-
ing power, limited memory and battery, small screen size, and inconvenient
keyboard. All of these require a light but efficient security architecture.

Another important characteristic of mobile devices indicates even more
serious vulnerabilities and challenges. “Phones are primarily used to com-
municate. They are built to make communication as easy as possible,” notes
Aaron Davidson, CEO of antivirus company SimWorks. “Phone users want
to communicate, and viruses want to be communicated” [12]. Every mobile
phone has a contact list; if one phone is infected by malware, the people on
the contact list will be vulnerable to attack.

To sum up, mobile device security has some similarities with computer
security, but faces additional challenges.

Basic Design Principles

Saltzer and Schroeder’s classic article on computer security design [9] lays
out essential principles to follow when designing a security solution. In this
section we will explain some of these principles, as well as show how they
were applied in the Symbian platform security design.

■■ Economy of mechanism: Economy of mechanism means the design should
be small and simple. The simpler a system is, the fewer vulnerabilities
it should have. When we apply this rule to the Trusted Computing Base
(TCB) design, fewer trusted components will result in fewer internal trust
relationships and a simpler system. In Symbian OS, the only fully trusted
part is the Trusted Computing Base, which is small enough to be well
tested and reviewed.

■■ Fail-safe defaults: In the security field this principle means that, by default,
access to a system’s resources should be denied. This is needed to prevent
the situation where some sensitive resource is forgotten from the list of
resources but must be protected. When applied to users of a computer
system, the principle may also mean that a user should be given a secure
default choice when presented with a security question. Symbian follows
the ‘‘deny by default’’ rule in its design, but the graphical interface does not
always advise a secure choice for a user. For example, when an application
tries to connect to the network, the user is asked whether it is allowed to
do so or not. The ‘‘yes’’ button (meaning ‘‘allow connection’’) is situated
on the left and is the button the user usually presses. So, the user tends to
choose the unsafe option presented in that graphical interface.

■■ Complete mediation: Every time any system resource is accessed, there
should be a check whether this action is authorized for a caller. Symbian
Platform Security includes access control checks on all platform resources,
but it does not provide any mechanism for applications that need to
provide flexible access control to the applications’ own resources. We will
discuss this problem in more detail in the discussion section.

■■ Open design: The security solution should not try to build security by ob-
scurity, but, rather, rely on secure storage for cryptographic keys and other
security material (e.g., certificates, initialization vectors, etc.). Nowadays,
Symbian almost fully follows this principle by open sourcing the operat-
ing system itself, including the security solution. However, the information
about hardware security support is still not fully public.

; LO G I N : AUGUST 201 0	 SYM B I A N OS PL ATFO R M SECU RIT Y MO D E L	 25

■■ Principle of Least Privilege: Least privilege means that a process should be
allocated sufficient privileges to accomplish its intended task but no more.
However, this principle does not speak about any granularity of privileges,
so often it is interpreted quite broadly. Symbian Platform Security addresses
this principle by its capability model.

■■ Psychological acceptability: Psychological acceptability requires that the
user interface should be intuitive and clear. An elegant interface, combined
with a precise definition of its behavior, promotes the correct and secure
use of the system. For example, Symbian should convert the various low-
level capabilities into several user-friendly descriptions, such as: “The appli-
cation wants to open the Bluetooth connection: allow or not?”

One principle that needs to be added to this classic list is the notion of
“trusted root,” meaning that there should be a chain of trust going from the
hardware to upper parts of the operating system in order to secure the end
of the chain from offline attacks.

Concepts of the Symbian OS Security Model

In this section we will introduce three important concepts in Symbian OS
platform security: three trust tiers, capabilities, and data caging.

TRUSTED COMPUTING PLATFORM: THREE TRUST TIERS

F I G U R E 1 : T H R E E T R U S T T I E R S [8]

The first essential concept in Symbian OS platform security is the “three
trust tiers” model, shown in Figure 1. Figure 1 depicts a trusted computing
platform comprising a Trusted Computing Base (TCB), a Trusted Computing
Environment (TCE), and Applications.

■■ Trusted Computing Base (TCB): The heart of a trusted computer system is
the Trusted Computing Base (TCB), which contains all of the elements of
the system responsible for supporting the security policy and supporting
the isolation of objects (code and data) on which the protection is based
[10]. TCB is the most trusted part of Symbian OS. It has three components:
the operating system kernel, the file server (F32), and the software installer.
All of them have been carefully checked to ensure that they behave prop-
erly and can be completely trusted. The kernel has the responsibility for
managing all the processes and assigning appropriate privileges to them.

26	 ; LO G I N : VO L . 35, N O. 4

The file server is used to load the code for running a process. The software
installer is used to install applications from files packages. It also checks the
digital signatures of the packages to validate the privileges requested for the
program binaries, so it is the “gatekeeper” for the mobile device.

■■ Trusted Computing Environment (TCE): The next tier is the TCE, which
is a set of different system servers running with different privileges. TCE
consists of trusted software provided in the mobile phone by Symbian and
others, such as the UI platform provider and the mobile device manufac-
turer [8]. The TCE usually implements a system server process and is less
trusted, and thus it has only limited privileges to perform a defined set of
functions. With this design, Symbian can ensure that failure of one server
will not threaten the whole system, and it is also impossible for a misbe-
having system server to compromise the security of another server, since it
does not have access to the same APIs [16].

■■ Applications: Third-party applications are the last tier in this trusted com-
puting model. As they are not highly trusted, they only have privileges to
access the services that are unlikely to pose a security risk, and they are not
allowed to access critical low-level operations. There are actually two kinds
of applications: signed applications and unsigned applications. If a signed
application wants to use some service provided by TCE, it must request
that TCE run the service on its behalf. TCE will only accept the request if
the application has been granted enough privileges. The unsigned appli-
cations, however, can only perform some operations that do not require
privileges, or operations that may be allowed by the user. It is necessary to
point out that there are a lot of useful operations which can be performed
by unsigned applications and which do not require a signature because
they are not security-relevant. A user may allow some operations to be
performed even if an application is not signed, via a user-prompt dialog.
An unsigned application, then, is not necessarily worthless software or mal-
ware: an application should have a signature only when it is necessary.

To summarize, the TCB is the most trusted part and controls access to all
sensitive low-level operations such as the communication device drivers.
The TCB ensures that only the privileged TCE components are able to per-
form these operations. The TCE then provides system services, such as the
telephony server, to applications. This is the only way for the applications to
perform the low-level operations [8].

CAPABILITIES DETERMINE PRIVILEGE

The second basic concept in the Symbian OS platform security model is
capabilities. A capability is an unforgeable ticket, which when presented can
be taken as incontestable proof that the presenter is authorized to have ac-
cess to the object named in the ticket [9].

Capabilities Basics in Symbian OS

F I G U R E 2 : A C C E S S C O N T R O L B A S E D O N C A P A B I L I T I E S

; LO G I N : AUGUST 201 0	 SYM B I A N OS PL ATFO R M SECU RIT Y MO D E L	 27

F I G U R E 3 : A C C E S S T O S E R V I C E S V I A T H E T C E

In Symbian OS, each process runs with a list of capabilities, and these capa-
bilities determine whether a given resource can be accessed by the process.
As shown in Figure 2, process X (with capabilities A, B, and C) can access
the resource Y, which requires capabilities A and B, but cannot access the
resource Z, which also requires capability D. The concrete form used to ac-
cess the resources is through APIs, and different APIs will require different
capabilities for the services they provide.

The Symbian OS uses capabilities to represent access privileges. Each live
process and its corresponding capabilities are listed and monitored by the
system kernel. A process will ask the kernel to check the capabilities of an-
other process before deciding whether to carry out a service on its behalf [8].
Figure 3 shows how a well-known example of a client application X accesses
the Dial service via the telephony server (one component of the TCE). First,
process X sends the Dial request to Inter-Process Communication (IPC, part
of the kernel), which then delivers this request to the telephony server pro-
cess. The Dial service requires NetworkServices capability, and the system
kernel holds the capability list of X. The telephony server then checks X’s
capability list in the kernel and finds the capability NetworkServices there,
enabling access from X to the Dial service. The capabilities architecture is
discrete but not hierarchical; each capability is only associated with its cor-
responding resource, and capabilities do not overlap.

When the capabilities are designed and divided, the outcome is actually
a trade-off between the principles of “economy of mechanism” and “least
privilege” introduced in the section on Basic Design Principles, above. If
only “ economy of mechanism” is considered, the system will have only one
capability with full access to all resources. This system is simplest and is
easy to review, but it obviously doesn’t work. If “least privilege” is the only
principle followed, every API would have a dedicated capability, amount-
ing to over 1000 capabilities in the Symbian OS. This is also impossible to
manage and realize. The number of capabilities should be small enough to
manage but also reasonably big enough to show the differences between dif-
ferent privileges. To meet this requirement, Symbian OS defines 20 capabili-
ties with their special privileges.

Categories of Capabilities in Symbian OS
The capabilities are divided into several categories according to the three
trust tiers model; basically, the three kinds of capabilities are TCB capability,
system capabilities, and user capabilities. The categories and brief descrip-
tions of the capabilities are shown in Table 1.

28	 ; LO G I N : VO L . 35, N O. 4

T A B L E 1 : C A T E G O R I E S O F C A P A B I L I T I E S I N S Y M B I A N O S [3 , 6]

■■ TCB is fully trusted and has the highest privilege, so there should be a
capability owned only by TCB. This capability is just called TCB, which
allows one process to create new processes and assign capabilities to them.
Generally, the TCB capability is not granted to other parts besides TCB,
as it is really critical and closely related to the integrity and security of the
whole OS.

■■ System capabilities are assigned to access sensitive operations. Basically,
system capabilities are divided into two parts: manufacturer-approved
capabilities and extended capabilities. Manufacturer-approved capabilities
are the most sensitive capabilities. They are reserved by the mobile device
manufacturers and are enforced by TCB. Extended capabilities control ac-
cess to higher-level services and are enforced by TCE.

■■ User capabilities are also called “basic capabilities.” Following the psycho-
logical acceptability principle, user capabilities should be simple and easy
to understand, as they are defined for user interaction. User capabilities are

Category Capability Brief Description

User Capabilities

LocalServices Grants access to sending or receiving information through USB, IR,
and point-to-point Bluetooth profiles

ReadUserData Grants read access to confidential user data

WriteUserData Grants write access to confidential user data

NetworkServices Grants access to remote services such as dialing a number or send-
ing a text message

UserEnvironment Grants access to recording the user’s voice and using the camera

Location Grants access to data about the location of the device

System Capabilities
(extended
capabilities)

SwEvent Grants the right to simulate key presses, pen input, and capture
such events from any program

ProtServ Grants the right to a server to register with a protected name

TrustedUI Grants the right to create a trusted UI session, and, therefore, to
display dialogs in a secure UI environment

PowerMgmt Grants the right to kill any process in the system, to power-off
unused peripherals, and to cause the mobile phone to switch its
machine state

SurroundingsDD Grants access to logical device drivers that provide input informa-
tion about the surroundings of the device

ReadDeviceData Grants read access to sensitive system data

WriteDeviceData Grants write access to sensitive system data

System Capabilities
(manufacturer-
approved
capabilities)

CommDD Grants access to communication device drivers

DiskAdmin Grants the right to disk administration functions that affect more
than one file or directory such as formatting a drive

MultimediaDD Controls access to all multimedia device drivers (sound, camera, etc.)

NetworkControl Grants the right to modify or access network protocol controls

AllFiles Grants visibility to all files in the system and extra write access to
files under /private

DRM Grants access to alter DRM-protected content

TCB Capability TCB Grants access to the /sys and /resource directories in the device

; LO G I N : AUGUST 201 0	 SYM B I A N OS PL ATFO R M SECU RIT Y MO D E L	 29

usually granted to third-party applications to access the service provided by
the TCE, and the TCE is responsible for enforcement.

Capability Rules

F I G U R E 4 : L O A D I N G O F D L L S

There are two basic capability rules in the design of Symbian. The first rule
is that every process has a set of capabilities and its capability never changes
during its lifetime [8]. This rule is included in Symbian OS for simplicity
and security. The second rule states that a binary cannot load any DLL that
has fewer capabilities than itself (see Figure 4) [6]. This prevents untrusted
code being loaded into sensitive processes. The capabilities of a DLL do not
affect the capabilities of the process that loads it; process capabilities are
entirely defined by the capabilities of the EXE.

FILE ACCESS CONTROL SYSTEM

The last essential principle in Symbian OS platform security architecture
is the file access control system. It is designed to protect the integrity and
confidentiality of critical files. The concrete solution is called “data caging”
or “file caging.”

Basic Data Caging Principles
The original idea of data caging is simple: put the most important treasures
into a coffer and enforce strict access control to it, so that no one else can
easily access the treasures inside it. In Symbian OS, data caging is achieved
by providing special directories that “lock away” files in private areas [8].
Data caging is a lightweight mechanism, as the access control of the files
only relies on their path; thus, it works without another access control list,
which would consume additional system resources.

Data caging also follows the Principle of Least Privilege, by which a process
cannot access these special directories unless it is authorized. If we take a
close look at this aspect, there are two special capabilities closely related
with data caging: TCB and AllFiles. These are enforced by the TCB. If these
capabilities are granted, they will apply to all the files in the system. So they
are really critical and should not be assigned to one specific application. In
Symbian, the solution for this problem is to provide several different system
services with more limited privileges such as ReadUserData, WriteUserData,
and so on, so the access permission is narrowed and divided.

Caged Paths in Symbian OS
In Symbian OS, there are three caged top paths: \sys, \resources, and
\private. All their subdirectories are also access restricted. Only the pro-
cesses with TCB and AllFiles capability may access these directories.

30	 ; LO G I N : VO L . 35, N O. 4

■■ \sys
There are two important subdirectories under \sys: \sys\bin and \sys\hash.
\sys\bin is the default path where all the binary files are stored. The pre-
installed binaries are located at z:\sys\bin, which is a path in the ROM;
and add-on applications are under \sys\bin on some writable devices. In
Symbian OS, there are two rules defined for this path. First, only TCB can
write new executables into this path (via SWInstall) or execute the binaries
under this path (via F32). Second, only the binaries under this path are
runnable; all the other paths will be ignored by the loader. This ensures
the security and integrity of the system, since only TCB, not malware, can
create a new process.
\sys\hash is used to check whether a binary on removable media can be
launched. It is managed by the software installer. The installer will check
the presence and correctness of the hash, and the hash entry for a binary
will not be generated unless the installation has been validated. This
mechanism ensures the security of running a binary on removable media.

■■ \resources
Similar to \sys, \resources exists in both ROM and writable storage. The
files under \resources are read-only for most of the applications, because
this path is used to store the resource files, which will not be changed after
installation. Only an application with TCB capability (installer application)
can modify the files under this path, ensuring that resources installed for
one application will not be destroyed by other applications.

■■ \private
In Symbian, every EXE is assigned its own caged subdirectory under
\private. The subdirectory is open to its own process but is inaccessible to
other normal processes. Particularly, if two processes are loaded from the
same EXE, they share the same subdirectory [8]. The subdirectory under
\private is the default path to store the data of the process, but the de-
veloper can also choose to store the data of their application in a public
directory.

Software Installer in Symbian OS

The software installer plays an important role in Symbian OS platform
security, as it is one of the gatekeepers of the system. It is responsible for
ensuring that add-on native software is installed on the mobile phone with
the correct set of security attributes [8]. The software installer discussed here
only handles the installation of the software directly running on Symbian
OS, but not the software running on a Java Virtual Machine.

There are three main tasks for the installer of Symbian OS: first, to vali-
date and install the native Software Install Scripts (SIS files) on the mobile
device; second, to validate pre-installed software on removable media; lastly,
to manage upgrades and removals and provide the package management
service to the rest of the system.

IDENTIFIERS

Identifiers are used by the servers to identify processes. There are several
different kinds of identifiers in Symbian OS which are important for the
software installers. They are the Secure Identifier (SID), Vendor Identifier
(VID), and package UID (pUID).

The SID is used to identify the binaries, and it is locally unique. The VID
is used to distinguish the origin of the executable. If an application needs a
VID, it must be signed [17]. The pUID is the identifier of a package, or set of

; LO G I N : AUGUST 201 0	 SYM B I A N OS PL ATFO R M SECU RIT Y MO D E L	 31

files, that forms an installable unit [8]. For example, if we download one in-
stallable package of a game from Electronic Arts (EA)’s Web site and install it
into our Symbian mobile phone, the pUID is the ID of this package, the VID
is the ID of the EA company, and the SID is the ID of the executable binary
of the game after installation.

Identifiers are split into protected and unprotected ranges. Every identifier
will be allocated in these ranges, according to or not whether the application
will be signed.

SIS FILES AND REMOVABLE MEDIA

SIS (Software Installation Script) files in Symbian are used to deliver soft-
ware packages to mobile phones for installation and can be installed from
a PC, downloaded via a browser, or sent to a mobile device by MMS [8].
When the software installer validates the SIS files, it checks a lot of param-
eters. In general, it checks the capabilities the software wishes to use for
authorization. First, it checks to see whether the software is signed; second,
it checks that the certificate chain can be followed back to the root; then it
checks whether the certificate has been revoked. It can also mark root cer-
tificates as mandatory, ensuring that all installable packages must be signed
with it.

After the validation of authority, the installer compares the capabilities
requested by the installable package with those that the root certificate can
grant, and calculates the largest set of capabilities that can be granted. A
configuration option allows the end user to grant additional capabilities to
the SIS file if these capabilities are not granted by the installer directly. If
the user refuses to grant the additional capabilities, the software will not be
installed [17]. Another possibility is to ask for the user grantable permissions
during runtime, but this is annoying to some users. The overall process of
installing a signed application is shown in Figure 5.

F I G U R E 5 : I N S T A L L A T I O N P R O C E S S F O R S I G N E D P A C K A G E S

Besides the installation from the SIS files, the software can also be installed
onto removable media. The most important security issue is to prevent tam-
pering with the binaries installed on removable media. This is achieved by
the software installer computing and storing (in the tamper-proof \sys\ direc-
tory) a reference hash of the program file on installation, which is recom-

32	 ; LO G I N : VO L . 35, N O. 4

puted and compared whenever the program is to be run [17]. If the reference
hash does not exist, or the two hashes do not match each other, the program
will not be executed.

Code Example

There are many Symbian C++ code examples of differing complexity on
the Internet, as well as many developers’ forums where people ask security-
related questions. The most common question regarding access control
concerns capabilities, which are needed in order to use a particular class
or function. Let’s take as an example a class CTelephony. The official API
reference documentation [1] explains that this is the class that can be used
to make a call (and for some other purposes, too). The actual function which
initiates a call is CTelephony::DialNewCall, and the documentation says that
it requires the user capability ‘‘Network Services’’ to use this function. The
full example of the class, which can be used in order to handle a call, can be
found in the Forum Nokia pages [2]. Listing 1 shows a small fragment of the
code, which was modified in order to check the return status of the func-
tion.

1 iTelephony = CTelephony::NewL();
2 CTelephony::TTelNumber telNumber(aNumber);
3 iCallParams.iIdRestrict = CTelephony::ESendMyId;
4 iTelephony->DialNewCall(iStatus, iCallParamsPckg,
5 														 telNumber, iCallId);
6 User::WaitForRequest(iStatus);
7 if (iStatus == KErrPermissionDenied)
8 	 {
9 		 // if we are here, then the call
10 		 // was stopped by the access control
11 }

L I S T I N G 1 : M A K I N G A C A L L C O D E E X A M P L E

The code (Listing 1) simply creates a class object CTelephony (line 1), pre-
pares the function parameters, such as phone number (line 2) and CallID
restriction setting (line 3), makes a new call (lines 4–5), and checks for the
‘‘KErrPermissionDenied’’ error code in order to check whether access was
denied (lines 7–11).

Symbian Signed Model

The purpose of Symbian Signed is to enable third-party access to protected
APIs and give users a basis for trusting third-party applications. If platform
security is like a firewall locking down access to the system, then Symbian
Signed is the mechanism that allows developers to negotiate entry through
the firewall [14].

There are three different options for Symbian Signed: Open Signed, Ex-
press Signed (online and offline), and Certified Signed [15]. Open Signed
can grant user and system capabilities to an application, and Open Signed
offline can also grant the restricted capability set. However, the signature
is limited to a device IMEI number and therefore is supposed to be used
only for development purposes. The Open Signed online option also doesn’t
require a Publisher ID, which costs money for developers and can be granted
only to a member of a company or organization. The Express Signed enables
developers with a Publisher ID to sign and distribute their applications
without IMEI restrictions. The cost per application’s signature is small (10

; LO G I N : AUGUST 201 0	 SYM B I A N OS PL ATFO R M SECU RIT Y MO D E L	 33

euros), and the submitted applications are randomly tested for compliance
with the Symbian Signed Test Criteria. This signature can be used for com-
mercial purposes, but the restricted capability set can be granted to such
an application. Certified Signed is the most common option for commercial
software developers and can grant, in some cases, even access to manufac-
turer capabilities.

THE SIGNING PROGRESS

According to [8], the signing process consists of four key steps: (1) devel-
opment, (2) developer authentication, (3) testing against industry-defined
criteria, and (4) signing against the mobile device’s root certificate.

The basic mechanism of the signing model works as follows: sensitive APIs
are protected by capabilities; if the programs wish to access protected APIs,
they must be granted the corresponding capabilities. The signing process is
responsible for granting these capabilities, and it will encode the capabilities
into digital certificates accompanying the application. The application cer-
tificates are validated at install time and the accesses to the critical APIs are
also policed at runtime. Finally, when the process is running, the resource
and privacy of the application will be protected by the additional security
mechanisms of the system.

Analysis and Discussion

Earlier, the Symbian OS platform security was closed, no one was talking
about the real implementation, and there were no publications about it.
Nowadays, Symbian is fully open sourced, which is a very good step towards
understanding its security solution. As there is no absolutely right solu-
tion, in this section we will discuss some problems of Symbian OS platform
security and try to suggest some possible solutions. But before we start to go
into detail, it is important to remember that while analyzing the solution to
any problem, the constraints and given environment should be taken into
account. One big constraint on the devices running the Symbian OS, at the
time when the platform security was designed, was the processing power,
which had a huge impact on the design of the security solution. However,
today the processing power is no longer so constrained, and some decisions
can be revised.

LIMITATIONS OF THE CAPABILITY MODEL

First, to ensure the security of the OS, Symbian OS restricts the capability
set so that no one else can define a new capability. Of course, a fixed set
of capabilities is easier to manage both inside the platform and during the
Symbian Signed verification process, but sometimes having a flexible capa-
bility set is a very useful feature. For example, Symbian OS currently has no
way for an application which would like to protect its own data with its own
capability to enforce its own rules on how this capability can be granted to
other applications.

Another problem is that the capability set is not fine-grained enough. As
previously discussed, in order to keep the capability system simple, Sym-
bian only defines 20 capabilities, not enough nowadays to achieve user-
desired security. A lot of APIs are associated with the same capability, such
as ReadUserData. Since user data is not fine-grained, one process can access
either all user data or nothing. The result is that although a process—say,

34	 ; LO G I N : VO L . 35, N O. 4

a music player—should only be allowed to access part of the user data (the
music files), through this capability it can also access data that should be off
limits, such as the user’s photos, documents, and even private email if they
are stored in the user’s folder.

Many people would argue that users should not be bothered with fine-
grained security, which is of course true, but where is the border between
needed flexibility and fine-grained solution? Who should define the granu-
larity level? One possibility is to leave this choice to application developers
and create a flexible mode which allows them to specify the granularity they
need. Some developers prefer not to know much about platform security
features, however, but simply to develop their applications “as before.” Hav-
ing a flexible but complicated system may frighten some beginners starting
to develop applications for a particular platform.

Another possibility is to let the application certification authorities define the
granularity, since they have to maintain the tools to check what permissions
can be granted to a particular application. The last choice is to define the
granularity of the level that an end user understands. Taking the end user
into consideration is especially important if the user has to make any access
control decisions on a platform, simply because users have to understand
the ramifications of their actions in order to make a correct choice.

The question of granularity, then, should balance the needs of application
developers, certification authorities, and end users. In the case of access
control, end users become more and more security educated over time, espe-
cially users of high-end devices such as smartphones and minicomputers, as
the generations change. Today, mobile device users understand the differ-
ence between their media files and email contents. However, Symbian OS
platform security was designed when the notion of mobile device security
was not very commonly understood, and ordinary users were not educated
enough to think about their security and privacy to the deeper degree that
Symbian proposed. At that time, it was reasonable to make the capability set
small and simple, but for future solutions, the granularity probably should
be increased.

PROBLEMS OF THE USER PROMPTING

As we mentioned before, when applications are installed or executed, the
system will sometimes ask whether the user would like to grant some ad-
ditional capabilities to the application; this can be dangerous [18]. Most
applications downloaded from the Web are not signed, and, as normal users
usually do not have enough security knowledge, this mechanism leaves open
the possibility for malware to ask for some “user capabilities” from the users
directly and then misuse the privilege. Many usability studies have shown
that users tend to click ‘‘yes, yes, ok’’ in response to questions, after having
become familiar with the process, which happens quickly. Moreover, since
Symbian platform security does not fully provide a Trusted UI, there is no
guarantee that a user prompt is fully secure and that it’s actually an end user
who presses the ‘‘allow’’ button on the screen.

Of course, many mobile operating systems use user prompts, mostly to
guard themselves against liability, and put the consequences of a bad secu-
rity decision on the user’s shoulders. So how can we help the users to make
better security decisions? What can be an alternative to a user prompt? One
possible solution might be to allow a user access to a good software reputa-
tion system during the installation process. Such a system, if trusted and
easy to use, may help users to make the right security decisions. Reputation

; LO G I N : AUGUST 201 0	 SYM B I A N OS PL ATFO R M SECU RIT Y MO D E L	 35

systems are hard to build, but if built correctly, they could provide a great
service for users.

ISSUES WITH THE SYMBIAN SIGNED MODEL

Before starting to speak about issues with the Symbian Signed Model, let us
recall its purpose. Symbian Signed allows third-party application developers
to certify their software and therefore to get access to needed protected re-
sources. This process is very important for any operating system that wants
to support third-party applications and still check their quality. However,
the process should be organized very carefully in order not to become a
nightmare for applications developers and process maintainers.

Most software submitted to the Symbian signing process is checked by an
antivirus engine; only some samples are checked manually. As the antivirus
engine cannot guarantee detection of all potential malware, it is possible for
evil codes to pass the signing process and acquire a digital signature. Re-
cently, a Trojan called Sexy Space passed the security check of Symbian and
obtained the digital signature [11]. Thus, there is always a possibility that
malware can bypass the binary checks of Symbian Signed.

Also, the Symbian Signed process used to be quite painful for developers: it
is slow, costly, and difficult. If your application needed to be certified for the
sales version, for example, it used to take at least seven steps and one week
to wait for the result. You also had to pay for the Publisher ID (200 USD/
year) and the testing costs (at least 250 EUR) to get the signature [15]. The
situation is slowly changing now, since the platform became open sourced
and processes are evolving, but originally the service was not well executed.

 This issue led to the current situation in China. The biggest Symbian fans
community [5] in China made a survey on the N95 discussion board [4]
asking if users wanted to “crack” their mobile phones. “Crack” here basically
means disabling the installer’s capability check mechanism to bypass the
Symbian Signed problem. The results, which we translated from Chinese,
showed that over 70% of the 1127 active users participated in the survey
would like to do so (or already had done so) for a number of reasons. One
reason is that they wanted to install some cool application which was not
certified by Symbian Signed but which requires some system capabilities.
Some other users bypassed the system by submitting the IMEI code of
their devices in order to get their own developer certificates, so they could
self-sign the application and therefore allow it to access needed resources
on the devices. This simple example shows that if the process of application
submission and certification is problematic, users and developers can always
find a way to bypass it.

The last issue is that it is actually difficult for developers to know the exact
capability set for their applications. As there is no automatic tool for the
developers to detect the capabilities needed by their software, sometimes
they just try to include as many capabilities as possible, whether or not the
capability is needed.

Conclusion and Recent Developments

Symbian, as a leading mobile operating system, has a complete set of secu-
rity solutions. The design of Symbian Security resolves the most important
issues of mobile device security: the reliability of the OS, and the integrity
and privacy of the critical data on the mobile device. It follows several clas-
sic design principles and makes careful decisions between trade-offs, given

36	 ; LO G I N : VO L . 35, N O. 4

the constraints imposed on the platform security solution at the time of its
creation. The three essential concepts ensure the security of the system,
while the software installer and signing model also keep the platform open
for third-party developers. However, Symbian also has some weaknesses and
drawbacks, which we hope will be taken into account when new platform
security solutions for mobile devices are designed.

Recently a number of new OS security designs for mobile devices have been
introduced, such as the Android and Maemo security frameworks. Their
main difference from the Symbian solution comes from trying to utilize
basic existing UNIX security in order to implement the desired functionality.
The Maemo security solution tries to overcome a number of the earlier men-
tioned issues by providing an extensible set of capabilities (called “resource
tokens” in Maemo), better support for development tools and processes, and
a special mode of device operation where advanced developers can get al-
most full control over their devices. Time will tell, based on actual usage by
users and developers, whether any of these frameworks will succeed, which
is possible only if the lessons are learned from such examples as Symbian
OS security.

REFERENCES

[1] CTelephony class API reference: http://carbidehelp.nokia.com/help/
index.jsp?topic=/S60_5th_Edition_Cpp_Developers_Library/GUID
-35228542-8C95-4849-A73F-2B4F082F0C44/sdk/doc_source/reference/
reference-cpp/ETel_3rd_Party_API/CTelephonyClass.html.

[2] Example of CTelephony class usage: http://wiki.forum.nokia.com/index
.php/Make_call_with_CTelephony.

[3] Nokia Online Documents: Symbian security model: http://www.forum
.nokia.com/document/Cpp_Developers_Library/?content=GUID-232258EC
-D3B4-4D72-B12B-FFC34F070B4B_GUID-644A092A-6999-46F8-A81F
-363591CC0C03.html.

[4] Symbian China community discussion: http://bbs.dospy.com/viewthread
.php?tid=2474219&extra=page%3D1%26amp%3Bfilter%3Dpoll&bbsid=147.

[5] Symbian China fans community: http://bbs.dospy.com/.

[6] Symbian SDK: http://www.forum.nokia.com/info/sw.nokia.com/
id/05c63dfd-d6e9-4c0e-b185-d365e7001aeb/S60-SDK-0548-3.0-f
.3.215f.zip.html.

[7] Symbian, “The Future of Your App”: http://www.symbian.org/yourapp.

[8] Craig Heath, Symbian OS Platform Security: Software Development Using
 the Symbian OS Security Architecture (Wiley, 2006).

[9] Jerome H. Saltzer and Michael D. Schroeder, “The Protection of Informa-
tion in Computer Systems,” Proceedings of the IEEE, vol. 63, September 1975,
pp. 1278–1308.

[10] Donald C. Latham, Department of Defense Trusted Computer System
Evaluation Criteria, DoD 5200.28-STD, December 1985: http://csrc.nist.gov/
publications/history/dod85.pdf.

[11] George Lawton, “Sexy Space Threat Comes to Mobile Phones,” Comput-
ing Now, August 2009.

[12] Neal Leavitt, “Mobile Phones: The Next Frontier for Hackers,” Computer,
April 2005, pp. 20–23.

[13] Robert Lemos, “A Moving Target,” PC Magazine, June 2006, p. 124.

; LO G I N : AUGUST 201 0	 SYM B I A N OS PL ATFO R M SECU RIT Y MO D E L	 37

[14] Ben Morris. Platform Security and Symbian Signed: Foundation for a Secure
Platform (Symbian Developer Network, 2008): http://developer.symbian.com/
main/downloads/papers/PlatSec_and_Symbian_Signed.pdf.

[15] Ben Morris and Ashlee Godwin, A Guide to Symbian Signed, 3rd edition
(Symbian Software Ltd, 2008): http://developer.symbian.org/wiki/index.php/
Complete_Guide_To_Symbian_Signed.

[16] Joe Odukoya, Elise Korolev, and Ashlee Godwin, Platform Security for
All (Symbian Software Ltd, 2008): http://developer.symbian.com/main/
documentation/books/books_files/pdf/Plat+Sec+FINAL+-+WEB.pdf.

[17] Mark Shackman, Platform Security: A Technical Overview (Symbian
Developer Network, 2008): http://developer.symbian.com/main/downloads/
papers/plat_sec_tech_overview/platform_security_a_technical_overview
.pdf.

[18] Niu Xuelian and Ling Li, “Research and Improvement of the Symbian
OS Kernel Platform Security Design,” Computer Engineering, June 2006, pp.
194–196.

