
56	 ; LO G I N :  VO L .  35,  N O.  4   

D A V I D  N .  B L A N K - E D E L M A N

practical Perl 
tools: random 
acts of kindness
David N. Blank-Edelman is the director of 
technology at the Northeastern University 
College of Computer and Information Sci-
ence and the author of the O’Reilly book 
Automating System Administration with 
Perl (the second edition of the Otter book), 
available at purveyors of fine dead trees 
everywhere. He has spent the past 24+ years 
as a system/network administrator in large 
multi-platform environments, including 
Brandeis University, Cambridge Technology 
Group, and the MIT Media Laboratory. He 
was the program chair of the LISA ’05 confer-
ence and one of the LISA ’06 Invited Talks co-
chairs. David is honored to be the recipient 
of the 2009 SAGE Outstanding Achievement 
Award and to serve on the USENIX Board of 
Directors beginning in June of 2010.

dnb@ccs.neu.edu

I F  YO U  S U B S C R I B E  T O  T H E  N O T I O N  T H AT 
it is a good thing to practice random acts 
of kindness, how exactly do you ensure they 
are random? In this column, we’re going 
to take a pseudo-random walk through 
a number of ways people interact with 
randomness using Perl and various Perl 
modules. You’ll encounter randomness in 
many application domains, including cryp-
tography, data protection, software testing, 
Web development, voting, games, statistics, 
to name just a few. Rather than focusing 
on any one domain for use, this column will 
point at some tools to make your use of 
randomness easier. 

Perl’s Built-in Functions 

The best place to start talking about randomness 
in Perl is with its two random number–related 
internal functions: rand() and srand(). The former 
provides you with access to your operating system’s 
random number generator (which is either good 
or bad, depending on your operating system). By 
default, it returns “a random fractional number 
greater than or equal to 0 and less than the value 
of an optional argument.” You’ll often see code that 
looks like this: 

print int(rand(20));	 # prints a random integer  
			   from 0 to 19 

Some random number generation algorithms pro-
duce “more random” numbers than others. Which 
algorithm your operating system uses isn’t always 
obvious or documented, hence my comment above. 
The one thing you can say about all of them is that 
in order to get the best possible (or even correct) 
use of rand(), you have to first wisely choose an 
initial value to “seed” it with. This is where the 
srand() function comes into play. 

The srand() function accepts a seed value that 
rand() will use. If you give srand() the same value 
each time, rand() will generate the same “random” 
numbers each time. That repeatable quality in a 
random number generator may seem a bit strange, 
but we’ll discover at least one use for it later in this 
column. 

rand() calls srand() by default the first time it is 
called. srand() tries to use a decent default seed 
value “based on time of day, process ID, and 
memory allocation, or the /dev/urandom device if 
available,” but you still see professionally paranoid 



; LO G I N :  AUGUST 201 0	 PR AC TI C A L PE RL TO O L S :  R A N D OM AC T S O F K I N D N ESS	 57

programmers calling this function when they want to be extra careful. We’ll 
see one module in the very next section that some people use to super-
duper-secure seed their random number generator. 

Better Generators 

If you are not satisfied with using rand() to access the OS’s built-in random 
number generator, Perl offers a ton of alternatives. I should note that I’m not 
a mathematician (nor do I play one on TV), so I am not qualified to recom-
mend one random-number-generator algorithm/module over another. I can 
point to a few that seem popular and talk a good game, but if you are going 
to need to use one because you have a serious need for the most “secure” 
RNG (random number generator) available, best to talk to someone more 
serious about this stuff than I am. Three modules in this vein are: 

1.	 BSD::arc4random—to make use of the same RNG algorithm used by  
OpenBSD and others

2.	 Math::Random::MT (and related modules)—to use the Mersenne Twister 
RNG (though MT RNGs produce “high-quality” random numbers they are 
known not to be suitable for crypto uses)

3.	 Math::Random::ISAAC—to use the ISAAC RNG (still apparently crypto-safe) 

Let’s look at how to use the last two just so you get a feel for how they work. 

The easiest way to use a Mersenne Twister RNG is through the 
Math::Random::MT::Auto module (there is a Math::Random::MT module, but 
this one has the added feature of making it easier to seed the RNG from a 
number of sources). To use Math::Random::MT::Auto, your code can be as 
simple as: 

use Math::Random::MT::Auto ‘rand’;
# Perl’s built-in overridden with an MT 

This one line effectively substitutes the built-in rand() function with one 
backed by the MT algorithm. If that sort of overloading magic gives you the 
heebie-jeebies, you can be more explicit in how it gets used: 

use Math::Random::MT::Auto;
my $rng = Math::Random::MT::Auto->new();
print $rng->irand(20)	 # mimics the rand() example above
			   # use ->rand() instead for a rand() clone 

Math::Random::MT::Auto also offers bonus functions like shuffle() to shuffle 
arrays in an MT-inspired fashion. 

Math::Random::ISAAC (and its accompanying fast version, 
Math::Random::ISAAC::XS) is similarly easy to use: 

use Math::Random::ISAAC;
my $rng = Math::Random::ISAAC::XS->new( @seeds );
$rng->irand(); 

Math::Random::ISAAC makes a point of not trying to pick a good seed 
value by default because the author believes that’s a decision the user 
should make in a careful and concerted fashion. The documentation does 
point out a number of ways to generate a good seed value, one of which I 
want to mention because it addresses the issue we left open before when 
discussing srand(). At the moment, one of the better ways is to use the 
Math::TrulyRandom module that attempts to generate values based on “in-
terrupt timing discrepancies.” Math::TrulyRandom gets used like this: 

use Math::TrulyRandom;
$random = truly_random_value(); 



58	 ; LO G I N :  VO L .  35,  N O.  4

According to the documentation, “The random numbers take a long time 
(in computer terms) to generate, so are only really useful for seeding pseudo 
random sequence generators.” 

Before we move on to the next section, I want to mention one of the more 
intriguing places you could turn to for randomness, namely the Web. The 
Perl module Net::Random queries one of two Web-based random number 
sources. One is fourmilab.ch, home of the HotBits project [1]. According to 
their site: 

HotBits is an Internet resource that brings genuine random numbers, gen-
erated by a process fundamentally governed by the inherent uncertainty 
in the quantum mechanical laws of nature, directly to your computer in 
a variety of forms. HotBits are generated by timing successive pairs of ra-
dioactive decays detected by a Geiger-Müller tube interfaced to a com-
puter. You order up your serving of HotBits by filling out a request form 
specifying how many random bytes you want and in which format you’d 
like them delivered. Your request is relayed to the HotBits server, which 
flashes the random bytes back to you over the Web. Since the HotBits 
generation hardware produces data at a modest rate (about 100 bytes per 
second), requests are filled from an “inventory” of pre-built HotBits. Once 
the random bytes are delivered to you, they are immediately discarded—
the same data will never be sent to any other user and no records are kept 
of the data at this or any other site. 

The other random number source is random.org, a site devoted to random-
ness. Their site says: 

RANDOM.ORG offers true random numbers to anyone on the Internet. 
The randomness comes from atmospheric noise, which for many purposes 
is better than the pseudo-random number algorithms typically used in 
computer programs. 

Random.org has a quota system in place that makes sure people don’t abuse 
the system and try to consume all of the random bits it produces. You can, 
however, buy a larger quota, i.e., more bits. It amuses me that it is now pos-
sible to figure out how much randomness costs (at the time of this writing: 
$150 USD will get you 600,000,000 bits, or 4 million bits per dollar, which 
seems like quite a bargain, no?). 

The Net::Random module knows how to query both Web services. Here’s an 
example from its documentation: 

use Net::Random;
my $rand = Net::Random->new();	# use fourmilab.ch’s randomness source,
	 src => ‘fourmilab.ch’,	 # and return results from 1 to 2000
	 min => 1,
	 max => 2000
);
@numbers = $rand->get(5);	 # get 5 numbers

As the documentation for Net::Random points out, there are certainly secu-
rity concerns with using a service like this (especially when you add caching 
Web proxies to the mix), so best check out the documentation before you 
start to use this for a serious project. 

Modules for Generating Random Data 

That last bit provides a nice segue into a section on ways Perl can help make 
using randomness in your applications easier. We saw a bit of this in my 
last column. In that column we explored a number of Perl modules like 



; LO G I N :  AUGUST 201 0	 PR AC TI C A L PE RL TO O L S :  R A N D OM AC T S O F K I N D N ESS	 59

Data::Generate and Data::Maker for creating random but plausible-looking 
data records. Let’s look at a further expansion of the theme. 

The first set of modules, similar to those we saw last time, are those that 
take some sort of specification and return random data in the form of your 
choice. For example, String::Random lets you write code like this: 

use String::Random;
my $srobj = new String::Random;
$rand_string = $srobj->randregex(‘ \d[a-z]\d’); 

Once run, $rand_string will consist of a random string containing a digit, a 
letter from a to z, followed by another digit. String::Random can either take a 
regular expression (using a subset of Perl regexp syntax), as was done above, 
or take a pattern more like pack() and create random strings based on that 
specification. 

To create a more targeted set of data, you might find Data::Random and 
Data::Rand::Obscure more useful. The former lets you request different 
kinds of data using functions like: 

rand_words()	 - produce random words from a list 
rand_chars()	 - produce random characters from a defined set
rand_set()	 - produce random array elements from a given array
rand_date()	 - generate random date strings
rand_time()	 - generate random time strings
rand_datetime()	 - generate random date/time strings 

and my favorite: 

   rand_image()	 - generate a random PNG-format image 

All of these functions behave the way you would expect—you hand them 
a few initialization parameters (such as the size of the character string you 
want to get back and the number of strings to return) and they return the 
data requested. The one thing you may find Data::Random doesn’t do is 
provide a facility for only returning values not previously returned (i.e., only 
unique responses). For that you may wish to check out Data::Rand instead. 
It lets you provide a flag called ‘do_not_repeat_index’ which keeps the mod-
ule from using any one array index into the given set more than once. 

Data::Rand::Obscure is slightly more focused than either of these modules. 
Despite its name, it bears a closer resemblance in function to Data::Random 
than to Data::Rand. Data::Rand::Obscure provides a few functions along the 
lines of those we saw for Data::Random: 

create_hex()	 - create a random hex string (also create())
create_b64()	 - create a random base64 string
create_bin()	 - create a random binary value 

The module “first generates a pseudo-random ‘seed’ and hashes it using a 
SHA-1, SHA-256, or MD5-digesting algorithm.” The documentation goes 
on to say, “You can use the output to make obscure ‘one-shot’ identifiers for 
cookie data, ‘secret’ values, etc.” It also makes dandy session keys for Web 
programming. 

Make the Randomness Go Away 

I tend to get a kick out of modules that are both counterintuitive and solve a 
clear problem using this twist from their usual expectations. Let’s bring this 
column to a close by looking at two modules that solve basically the same 
problem. 



60	 ; LO G I N :  VO L .  35,  N O.  4

Here’s the issue in a nutshell: sometimes you write Perl code that should 
be tested using random data as input. Creating such tests is a commend-
able endeavor, but they add another layer of complexity to the development 
process. If you find one of your module’s tests failing when presented with 
a certain input (randomly generated or not), you can’t really be sure whether 
later programming efforts have squashed the bug unless you have some way 
to precisely reproduce the initial input to the code. In this scenario, we need 
a method for making previously random inputs reproducible (which essen-
tially means removing the randomness from the “random inputs”). 

Both of these packages can intercept your tests’ calls to rand(). In the case of 
Test::Random, you simply: 

use Test::Random; 

in front of your usual test code. If you call your test program with the 
TEST_RANDOM_SEED environment variable set, your code will use that 
particular seed every time. By default, Test::Random will display its current 
random seed so you can feed it back into the program. For example (from 
the Test::Random documentation): 

$ perl some_test.t 

	 1..3
	 ok 1
	 ok 2
	 ok 3
	 # TEST_RANDOM_SEED=20891494266 

$ TEST_RANDOM_SEED=20891494266 perl some_test.t 

	  1..3
	  ok 1
	  ok 2
	  ok 3
	  # TEST_RANDOM_SEED=20891494266 

From this example you can see how the Test::Random magic lets you 
run the same test each time using the same predictable “random” input. 
Test::MockRandom is slightly more complicated and meant for intercepting 
rand()-like calls from within object-oriented programs. Be sure to read its 
documentation for further information on how to actually use it. 

Take care, and I’ll see you next time. 

REFERENCES

[1] http://www.fourmilab.ch/hotbits/.   


