
36	 ; LO G I N : VO L . 35, N O. 5

D A V I D N . B L A N K - E D E L M A N

practical Perl tools:
perhaps size really
does matter
David N. Blank-Edelman is the director of
technology at the Northeastern University
College of Computer and Information Sci-
ence and the author of the O’Reilly book
Automating System Administration with
Perl (the second edition of the Otter book),
available at purveyors of fine dead trees
everywhere. He has spent the past 24+ years
as a system/network administrator in large
multi-platform environments, including
Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He
was the program chair of the LISA ’05 confer-
ence and one of the LISA ’06 Invited Talks
co-chairs. David is honored to have been
the recipient of the 2009 SAGE Outstand-
ing Achievement Award and to serve on the
USENIX Board of Directors beginning in June
of 2010.

dnb@ccs.neu.edu

I R E A L I Z E T H I S I S A V E R Y S E N S I T I V E
topic for some people, so I am going at-
tempt to broach this subject with as much
care and finesse as possible. Today we are
going to be talking about being small—how
to accept and embrace being small, how
to use what you have, that sort of thing.
In fact, we’re going to make you feel good
about using things that are downright tiny.
Or perhaps I should say “::Tiny”, because the
subject of this column will be the modules
whose names end in ::Tiny.Took

Many of the modules in this family were inspired
by work done initially by Adam Kennedy and a se-
ries of modules he created. These modules were de-
signed to take some of the more useful but heavy-
weight modules in the Perl ecosystem and partially
reimplement them as lean and mean as possible.
There’s a somewhat tongue-in-cheek module called
Acme::Tiny, not written by Kennedy, whose doc
lists a set of “commandments” that represents the
gestalt of the ::Tiny family:

1. The module should be implemented in “as little
code as possible.”

2. The module should implement a useful subset of
functionality.

3. The module should use at least 1/10th the
amount of memory overhead, ideally less than
100k.

4. The module MUST have no non-core dependen-
cies.

5. The module MUST be only one single .pm file.
6. The module should be back-compatible to at

least 5.004.
7. The module should omit functionality rather

than implement it incorrectly.
8. If applicable, the module should be compatible

with the larger module.

::Tiny Markup

So let’s actually look at some of the modules from
this family. The first set I’d like to explore is in
the general area of markup language processing.
Diving into the deep end with the most markup
of markup languages, XML::Tiny is a module that
could be used if you had some basic XML parsing
you needed done but didn’t want the memory or
module size overhead of the more complete parsers
like XML::LibXML. For example, if we used the

; LO G I N : O C TO B E R 201 0	 PR AC TI C A L PE RL TO O L S : PE RH A P S S IZE RE A LLY D O ES M AT TE R	 37

Yahoo! Geolocation service we discussed in the June 2006 column, it would
hand us back a result that looked like this without the indentation:

<?xml version=”1.0”?>
<ResultSet	xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
	 xmlns=”urn:yahoo:maps” xsi:schemaLocation=”urn:yahoo:maps
					 http://api.local.yahoo.com/MapsService/V1/GeocodeResponse.
xsd”>
	 <Result precision=”address”>
		 <Latitude>37.859576</Latitude>
		 <Longitude>-122.291659</Longitude>
		 <Address>2560 9th St</Address>
		 <City>Berkeley</City>
		 <State>CA</State>
		 <Zip>94710-2516</Zip>
		 <Country>US</Country>
 </Result>
</ResultSet>
<!-- ws05.ydn.ac4.yahoo.com uncompressed/chunked Sun Jul 25 17:34:42
PDT 2010 -->

XML::Tiny will give you back a data structure that looks like this:

0	ARRAY(0x100b5baf8)
	 0	 HASH(0x100d0be48)
		 ‘attrib’ => HASH(0x100d0bd40)
			 ‘xmlns’ => ‘urn:yahoo:maps’
			 ‘xmlns:xsi’ => ‘http://www.w3.org/2001/XMLSchema-instance’
			 ‘xsi:schemaLocation’ => ‘urn:yahoo:maps
			 http://api.local.yahoo.com/MapsService/V1/GeocodeResponse.xsd’
		 ‘content’ => ARRAY(0x100d0be18)
			 0	HASH(0x100d0bf38)
				 ‘attrib’ => HASH(0x100d0bff8)
					 ‘precision’ => ‘address’
				 ‘content’ => ARRAY(0x100d0bf50)
					 0	HASH(0x100d0c040)
						 ‘attrib’ => HASH(0x100d0c0a0)
							 empty hash
						 ‘content’ => ARRAY(0x100d0c028)
							 0	HASH(0x100d0be30)
								 ‘content’ => 37.859576
								 ‘type’ => ‘t’
						 ‘name’ => ‘Latitude’
						 ‘type’ => ‘e’
					 1	HASH(0x100d0c148)
						 ‘attrib’ => HASH(0x100d0c1c0)
							 empty hash
						 ‘content’ => ARRAY(0x100d0c118)
							 0	HASH(0x100d0c0d0)
								 ‘content’ => ‘-122.291659’
								 ‘type’ => ‘t’
						 ‘name’ => ‘Longitude’
						 ‘type’ => ‘e’
					 ...

It is the same data structure you would expect from XML::Parser::EasyTree.
For this case, I find all of the dereferencing you need to do (i.e., $document

38	 ; LO G I N : VO L . 35, N O. 5

->[0]->{content}[0]->{content} . . . and so on) to be a bit tedious, so here’s a
quick way we can cheat. XML::Tiny’s author also released a separate module
called XML::Tiny::DOM that builds on XML::Tiny in a way that makes it
much easier to get to the data we need. We’ll lose some of the ::Tiny purity if
we use it, but it means our code can look like this (pay particular attention
to the clarity of the last two lines):

use LWP::Simple;
use URI::Escape;
use XML::Tiny::DOM;
use IO::Scalar;

usage: scriptname <location to geocode>

my $appid	 =	 “{your Yahoo! API key here}”;
my $requrl	 =	 “http://api.local.yahoo.com/MapsService/V1/geocode”;

my $request = $requrl .
	 “?appid=$appid&output=xml&location=” . uri_escape($ARGV[0]);
my $RESPONSE = new IO::Scalar \get($request);

my $document = XML::Tiny::DOM->new($RESPONSE);

print “Latitude: “ . $document->Result->Latitude . “\n”;
print “Longitude: “ . $document->Result->Longitude . “\n”;

I feel compelled before we move on to the next module to let you know
that some people are pretty negative about XML::Tiny’s lack of XML-parsing
rigor and handling of edge-cases. It certainly is the wrong module to use if
pedantic parsing of XML is important to the task or the input data is at all
complex. But in a case like the one above, it seems to do peachy.

The mention of complex data offers a segue to the next module: YAML::Tiny.
YAML::Tiny’s documentation explains its purpose like so:

The YAML specification is huge. Really, really huge. It contains all the func-
tionality of XML, except with flexibility and choice, which makes it easier
to read, but with a formal specification that is more complex than XML.

The original pure-Perl implementation YAML costs just over 4 megabytes
of memory to load. Just like with Windows .ini files (3 meg to load) and
CSS (3.5 meg to load) the situation is just asking for a YAML::Tiny mod-
ule, an incomplete but correct and usable subset of the functionality, in as
little code as possible.

(Note: we’ll discuss the other large module examples mentioned above later
in this column.)

Using it is as simple as using the standard YAML modules (again, from the
doc):

use YAML::Tiny;
my $yaml = YAML::Tiny->read(‘file.yml’);
my $root = $yaml->[0]->{rootproperty};
my $one = $yaml->[0]->{section}->{one};
my $Foo = $yaml->[0]->{section}->{Foo};
...

Lest you think ::Tiny is somehow best for markup parsing only, let’s look
at two modules that handle markup generation. HTML::Tiny lets you write
straightforward code to produce HTML documents, so code like this:

; LO G I N : O C TO B E R 201 0	 PR AC TI C A L PE RL TO O L S : PE RH A P S S IZE RE A LLY D O ES M AT TE R	 39

use HTML::Tiny;

my $h = HTML::Tiny->new;

Generate a simple page
print $h->html(
	 [$h->head($h->title(‘;login Column’)),
		 $h->body(
			 [$h->h1({ class => ‘headline’ }, ‘First Section’),
				 $h->p(
					 ‘This is a test.’,
					 ‘Have you tried turning it off and on again?’
)
]
)
]
);

generates HTML like this:

<html><head><title>;login Column</title></head>
<body><h1 class=”headline”>First Section</h1><p>This is a test.</p>
<p>Have you tried turning it off and on again?</p>
</body>
</html>

In a similar vein, if you parse or generate Cascading Style Sheets (CSS code),
you might find Kennedy’s CSS::Tiny module (mentioned above) useful for
simple, quick work. It can parse a .css file, let you make changes, and write
the file back out using much less overhead than CSS.pm.

The last markup-related module I’ll mention is worth your attention not
least for the gumption the author showed in even attempting to write it.
Kennedy’s Template::Tiny tries to give the Template Toolkit 2 distribution
the ::Tiny treatment. Template Toolkit 2 (known as TT2 for short) is prob-
ably the single most popular templating engine in use in the Perl world
today. I think you would be hard pressed to find a Perl Web framework
that doesn’t offer some way to use TT2 to generate content. Like other fully
featured templating engines, it offers a panoply of ways to produce output
based on a combination of static text and dynamic data. An example TT2
template (from the tutorial) looks like this:

[% INCLUDE header %]

People of [% planet %], your attention please.

This is [% captain %] of the
Galactic Hyperspace Planning Council.

As you will no doubt be aware, the plans
for development of the outlying regions
of the Galaxy require the building of a
hyperspatial express route through your
star system, and regrettably your planet
is one of those scheduled for destruction.

The process will take slightly less than
[% time %].

Thank you.

[% INCLUDE footer %]

40	 ; LO G I N : VO L . 35, N O. 5

Here you can see static text with placeholders that will be filled in with the
appropriate content (in some cases the content of a variable, in others the
contents of other files). You can also do fun stuff like:

	
		 [% FOREACH page IN pages %]
			 [% page.title %]
		 [% END %]
	

TT2 is so feature-full, there is an entire 592-page O’Reilly book on the
subject. This means that creating a TT2 ::Tiny module is the equivalent of
building a to-scale model of the QE2 in a bottle with the expectation that it
should also be able to still transport a small number of passengers.

Given the author, I suspect the public Template::Tiny code is solid, but it is
still in enough flux that I hesitate to recommend you use it. I would, however,
recommend you follow Kennedy’s blog (http://use.perl.org/~Alias/journal/)
as he posts about the module’s development and the engineering decisions
he has made as he progresses. The first set of posts are at:

http://use.perl.org/~Alias/journal/39983
http://use.perl.org/~Alias/journal/39991
http://use.perl.org/~Alias/journal/40013
http://use.perl.org/~Alias/journal/40015

and for added fun, you can read about the JavaScript port of Template::Tiny
at http://use.perl.org/~Alias/journal/40126.

::Tiny Programming

Lest you think the ::Tiny philosophy only applies to markup-related stuff,
let’s careen off in an entirely different direction and look at two program-
ming-related ::Tiny modules. The first is the ::Tiny entry into an already
pretty crowded field: class builders. If you are a Perl programmer with a
heavy OOP bent (and yes, there are some of them out there), you know
that Perl doesn’t by default provide any shortcuts for the sometimes tedious
process of creating accessors for data in the objects you define. The mod-
ules many people gravitate toward to handle this are something from the
Class::Accessor distribution. Kennedy is very clear in his documentation
about why Object::Tiny module is an improvement over those modules:

■■ Object::Tiny is 93% smaller than Class::Accessor::Fast.
■■ Class::Accessor::Fast requires about 125k of memory to load.
■■ Object::Tiny requires about 8k of memory to load.
■■ Object::Tiny is 75% more terse to use than Class::Accessor::Fast.
■■ Object::Tiny is used with the least possible number of keystrokes (short

of making the actual name Object::Tiny smaller).
■■ And it requires no ugly constructor methods.

See the Object::Tiny documentation for the rest of the comparisons.

Using the module is as simple as:

package Foo::Bar;
use Object::Tiny qw{ foo bar baz };

and, lo and behold, when you create your Foo::Bar objects you get $object->
foo, $object->bar, and $object->baz like magic. Super simple, super easy.

The other programming-related module worth mentioning given our limited
space is Try::Tiny, which gives you the fairly standard try/catch exception-

; LO G I N : O C TO B E R 201 0	 PR AC TI C A L PE RL TO O L S : PE RH A P S S IZE RE A LLY D O ES M AT TE R	 41

handling idiom other languages scoff at Perl for lacking. That’s the one that
looks like this:

try		 { ... }
catch	 { ... }
finally	 { ... };

The idea is you can run a block of code as a “try”; if it fails the error can be
handled by the “catch” code and “finally” is run if either of those two blocks
returns success. You can do this sort of error handling using eval() in Perl
(and in fact, that’s how “try” is run), but it turns out there are a number of
fiddly details mentioned in the Try::Tiny documentation that make a bare
eval() not as useful as you’d like for this idiom. Try::Tiny handles all of those
details for you beautifully.

::Tiny To-Go

There are far too many interesting ::Tiny modules worthy of your attention
to fit into one column. I can only show you two more, but I encourage you
to go searching on CPAN for “::Tiny”. The first of the two harks back to a
February 2006 ;login: column on configuration files. Config::Tiny is a mini-
malistic .ini-format config file reader and writer. Here’s the sample example
from the documentation (slightly abridged):

use Config::Tiny;
my $Config = Config::Tiny->new();
$Config = Config::Tiny->read(‘file.conf’);
my $one = $Config->{section}->{one};
$Config->{newsection} = { this => ‘that’ };	 # Add a section
$Config->{section}->{Foo} = ‘Not Bar!’;	 # Change a value
delete $Config->{_};	 # Delete a value or section
$Config->write(‘file.conf’);

If you need something to read and write config files only machines will
touch, Config::Tiny works great. It is a less good option if you care about
preserving comments, order, whitespace, etc., in your config file (because it
doesn’t). For that you’ll want to seek out some of the other modules I men-
tioned in the February 2006 issue.

OK, last module. Along with Try::Tiny it is perhaps one of the most useful
in this column. If you have ever had to capture the output of an external
program for use in a Perl program, Capture::Tiny is the module for you.
Before you do anything else, I’d highly recommend you read the slides to
David Golden’s talk “How (NOT) to capture output in Perl” at http://www
.dagolden.com/wp-content/uploads/2009/04/how-not-to-capture-output-
in-perl.pdf.

Read that talk even if you are not planning to use anything ::Tiny. In it he
discusses the various ways people try to capture output and the drawbacks
of most of the ways you thought were the right ones. By the end of the talk,
you’ll be begging for a module that just Does The Right Thing. Golden
provides a happy ending to his talk by making Capture::Tiny available. It
provides capture, capture_merged (STDOUT and STDERR merged), tee and
tee_merged functions that do just what you would hope they would do and
do it well. If there is one true way to capture output from another command,
this is probably it. And it is ::Tiny to boot.

With that last nugget, I think it is time to take my leave. I hope you’ve
gained a new appreciation for the smaller things in life. Take care, and I’ll
see you next time.

