
48	 ; LO G I N : VO L . 35, N O. 5

D A V E J O S E P H S E N

iVoyeur: pockets-
o-packets, part 3

Dave Josephsen is the author of Building
a Monitoring Infrastructure with Nagios
(Prentice Hall PTR, 2007) and is senior
systems engineer at DBG, Inc., where he
maintains a gaggle of geographically
dispersed server farms. He won LISA ’04’s
Best Paper award for his co-authored
work on spam mitigation, and he donates
his spare time to the SourceMage GNU
Linux Project.

dave-usenix@skeptech.org

T H I S M O N T H B R I N G S Y O U T H E T H I R D
and final installment in my series on Argus,
the network flow monitoring and report-
ing framework. If you didn’t catch my first
two articles (see June and August issues of
;login:), you should pull them out of your
hamster cage and read what’s left of them.
I covered PCAP hardware, infrastructure,
and I also flamed up on the entire database
administration profession in general. In this
final article on Argus, I’m going to cover the
intricacies of the Argus client utilities, and
I’ll also probably flame up on the DBAs a
little more.

So let me give you a feel for how I use Argus on a
day-to-day basis. There are myriad reasons I find
myself turning to Argus daily, but two spring to
mind as especially common: complaints of network
slowness, and daily security reports.

“Network slowness” is, as we both know, usually
a PEBCAK [1] problem, but when I do want to
get a quick feel for what “the network” is doing, I
turn to ratop [2]. ratop is a great little utility that
implements a network “top” command using Argus
data-flows for input. You can point it at files with
-r or -R, but I’ll usually just go ahead and point it
straight at one of our radium streams with -S. This
way, I can log straight into the router and fire it up
with:

ratop -S localhost:4300

and get live utilization info similar to this:

OK, this is pretty obvious stuff, but Argus gets
even more impressive when you start getting into
the data-mining clients, and among these, racluster
[3] is king. But rather than bore you (more than I
already have) with lists of options, let me tell you a
story about our daily reports. We have several cron

ratop -S 10.20.0.2:4300	200/07/26.20:49:56 CDT
Rank	 StartTime	 Flgs	 Proto	 SrcAddr Sport	 Dir	 DstAddr Dport	 TotPkts	 TotBytes	 State
	 1	 20:49:37.426974	 e	 tcp	 10.20.34.1.40405	 ->	 10.20.5.1.ssh	 27688	 3045752	 RST
	 2	 20:49:36.454273	 e	 tcp	 10.20.1.5.57465	 ->	 10.20.0.2.4300	 80	 10832	 CON
	 3	 20:49:39.094155	 e	 vrrp	 10.100.1.20	 ->	 224.0.0.18	 12	 840	 INT
	 5	 20:49:35.698224	 *	 llc	 0:a:f4:20:60:85.stp	 ->	 1:80:c2:0:0:0.stp	 9	 540	 INT
	 6	 20:49:37.779319	 e	 icmp	 10.20.68.2	 ->	 10.100.1.10	 3	 342	 URP
	 7	 20:49:42.364118	 e	 tcp	 10.25.20.6.55616	 <?>	 10.20.5.1.ssh	 3	 258	 CON
	 8	 20:49:43.094867	 e	 udp	 10.100.1.20.42033	 <->	 10.100.1.10.domain	 2	 180	 CON
	 9	 20:49:43.095310	 e	 udp	 10.20.4.1.1679	 <->	 8.15.14.7.domain	 2	 180	 CON

; LO G I N : O C TO B E R 201 0	 I VOY EU R : P O CK E T S - O - PACK E T S, PA RT 3 	 49

jobs that gather security-relevant information from various systems detail-
ing things like people logging into things, files changing, and IDSes being
paranoid, so these can be compiled and emailed out in a daily report format.
Among these are a few racluster queries that I find useful. These are things
like “chatty kathys” (the top ten bandwidth users):

racluster -r <yesterdays_file> -w - -m saddr - ‘src net 10.201.16.0/21’ \
| rasort -m bytes load - -s saddr bytes load | head -n10

“town criers” (top ten broadcasters):

racluster -r <yesterdays_file> -w - -m saddr - ‘src net <heathen_subnet> \
and dst host <heathen_subnet_broadcast_addr>’ | rasort -m bytes load - \
-s saddr dport bytes load | head -n10

and “the red light district” (top 10 destination ports by total bytes trans-
ferred):

racluster -r argus-2010-05-20.log -w - -m proto dport \
| rasort -m bytes load - -s dport bytes load | head -n10

If you managed to stay awake through my last article, then some of these op-
tions should already be familiar to you, so I’ll go ahead and summarize them
again to make absolutely sure you won’t stay conscious this time.

-r tells racluster the name of an input file. Popular alternatives are to recur-
sively read a directory full of files with -R, or to read directly from an argus
daemon or radium process with -S.

-w tells racluster to write out binary data format to STDOUT. If I had speci-
fied -w foo, it would have written to a file called foo instead. If no -w is
provided, racluster will write human-readable text output. Some Argus tools
like rastream have “special” -w options that can do variable expansion for
things like writing to date-stamped files.

The story I want to tell you is about the last report I mentioned above (the
red-light district). Usually this report looks something like this:

80	 780506507 730813
22	 684953405 675527
443	 619322910 423802
8080 	 536904140 491149
...

This is a list of popular destination ports as measured by total byte count
and, secondarily, by “load” or bits per second. We use racluster to get a list
of all the ports and all the aggregated byte-counts and packet rates for those
ports, and then we use rasort to sort the list and give us formatted output.

The -m switch is very important and a little confusing, because it performs
related but very different functions in racluster and rasort. The -m switch to
rasort is simple enough: it specifies what criteria you want the list sorted by.
My chosen criteria in this case are twofold: primarily, I want the list sorted
by byte-count, and secondarily, by rate. I’ll talk more about -m in raclus-
ter below. The -s switch does the same thing in both tools. It specifies the
output format, which respects the order the arguments are passed on the
command line, so the first column is the port number, followed by the byte-
count, and finally the rate.

So one day, I opened my mail, and the red-light district report looked like
this:

39756	 1885065707 	 43076716
61589	 1884953405 	 37598340

50	 ; LO G I N : VO L . 35, N O. 5

51295	 1881932291 	 19342380
57683	 1853690414 	 19121481
13487	 1853657566 	 19197988
10242	 1834900162 	 18292097
5735	 1834731617 	 17534843
48909	 1822365775 	 19418729
63838	 1822191099 	 19795299
49242	 1822184229 	 19288059

“Well that’s odd,” I thought while logging into the pcap server to verify. Sure
enough, my top 10 destinations were all random high-number ports, and the
byte counts were huge and yet eerily similar. Nearly two gigabytes per port
traversing the router between the staging and dev subnets. My first question
was, are these ports being used over and over again, like a virus with a list
of ports? Or are each of these unique connections? Let’s ask Argus:

> ra -r <yesterdays_file> - dst port 39756
 16:25:34.560010 e D tcp 10.20.49.21.19026 -> 10.20.33.21.39756
15681122 1885065707 FIN

The ra [4] client is the simplest of the Argus clients. It literally stands for
“read argus,” and its job is to read argus data and output it in human-read-
able format. The options given you should already recognize. I told it to read
from my log file, and gave it a tcpdump-style packet filter with the first des-
tination port on my list. In other words, I took the top destination port and
asked ra to return whatever flows used that destination port on that day.

There is only one of them, so that 1885065707 bytes represents a single data
connection. One flow to a high-number port looks less like a virus and more
like the data channel of an ftp session. Now who would be silly enough to
incur my wrath by using FTP on the network? Well, this query yields a hint
to that question too. They’re both database server IPs. A few more ra com-
mands to the listed ports verifies that they’re all single connections between
the same two Oracle boxes.

Let’s see if we can confirm whether this is in fact ftp, and while we’re at it,
let’s see what else these boxes have been saying to each other. I want a list
of destination ports that 49.21 has spoken to 33.21 on. Using ra to ask this
question would yield every network connection these two hosts have made.
So if these boxes had 50 ssh conversations, we would get 50 lines of output
for ssh alone. Not what we want. We just want each protocol listed once, so
if the boxes used ssh 50 times, we just want ssh mentioned once, kind of
like piping the output to sort and then uniq. Argus has an elegant way of
doing this in racluster:

racluster -r <yesterdays_file> -m proto dport -w - - src host 10.20.49.21 \
and dst host 10.20.33.21 | rasort -m dport -s dport trans bytes | less

The Argus log file can be thought of as a pcap file, with a line for every net-
work conversation. Just reading the file gets you exactly that. But if you want
to, you can combine and consolidate these records using whatever metric
you want. In this case, we want to combine all the connections that use the
same port into a single record. To do this, we use racluster’s -m switch. Pass-
ing -m proto dport, actually does two things: it first consolidates all of the
records that use the same protocol (TCP, UDP, VRRP, etc.) and then further
combines all of the records that use the same destination port. When we do
this, all of the data we know about those individual records is preserved. For
example, the byte counts for each individual ssh connection get added up
to a total byte count for all the connections. Argus also keeps a connection
counter (called trans) for us, so we know how many connections the record

; LO G I N : O C TO B E R 201 0	 I VOY EU R : P O CK E T S - O - PACK E T S, PA RT 3 	 51

refers to. We sort the output by destination port number using rasort with -s
dport. The output from the above command looks like this:

ftp 	 550	 885138
sds	 2	 21922
5206	 2	 66124
5367	 4	 114308574
5509	 4	 45916440
sgi-es	 2	 132358
ininme	 2	 81566
openma	 4	 151217036
...

So these two boxes made 550 ftp control channel connections, which I
think verifies our theory about the random high-number ports. Now that
you (hopefully) understand racluster’s -m switch, go back up and look at
the other two reports, which both use -m saddr. Most racluster queries are
doing basically the same thing: filtering out some subset of an archive of
connections and then combining them based on the metric I’m interested
in knowing about. The “chatty kathys” report filters hosts out of a certain
subnet and combines them all on source address, so we can see how many
combined bytes each source address sent. The “town criers” report does the
exact same thing, just with a more specific filter (where the destination host
is the network broadcast address).

My last question is, just how much data did these two boxes end up sending
to each other? Let’s ask Argus:

>racluster -r <yesterdays_file> -m daddr - src host 10.20.49.21 \
and dst host 10.20.33.21 -s bytes

363278259124

Yeesh. DBAs. There are a few things I want to note about this last com-
mand; First, I removed the -w -, because we wanted human-readable output
directly from racluster (instead of piping it to rasort). If you forget to do
this, you’ll get binary gobbledy-gook output and probably hose your term.
This is annoying at first, but it’s a Pavlov [5] thing; you’ll eventually learn
to be aware of it. Second, racluster also supports formatted output (-s), as I
mentioned above, so if you don’t need sorted output, you can dispense with
rasort. And last, if I were to back off the search filter and just specify “src
host 10.20.49.21”, I would get a list of every box 10.20.49.21 had spoken to,
suitable for sorting by byte count (do you see why?).

Once you grok racluster’s data aggregation concept, every use case imme-
diately becomes kind of obvious. Want to know what Web sites your user
base hits the most? Aggregate on destination address (dstaddr) and sort by
bytecount (with a filter that excludes internal IPs). Want to know whose
sending the virus du jour? Aggregate on destination port (dport). Argus
makes getting data like this so easy it’s fun. I can (and do) poke around at
my Argus data for days (which, in my humble opinion, is a healthy and nor-
mal pastime for someone in our profession), but let’s face it, eventually you’re
going to want graphs.

So before you run out and write a Perl script that ties racluster to rrdtool,
you should know that the Argus guys already wrote one, and they included
it in the client’s tarball for you. It’s called ragraph [6], works great, and is
super easy to use.

52	 ; LO G I N : VO L . 35, N O. 5

Anyway, at this point, I do have a few more questions, but they’re not for
Argus. If anyone needs me, my clue-by-four and I will be over in the DBA
area.

Take it easy.

REFERENCES

[1] PEBCAK: “Problem Exists Between Chair and Keyboard”; http://www
.catb.org/jargon/html/P/PEBKAC.html.

[2] ratop: http://www.qosient.com/argus/.

[3] racluster: http://www.qosient.com/argus/.

[4] ra: http://www.qosient.com/argus/.

[5] Pavlov: A man famous for being mean to dogs; http://en.wikipedia.org/
wiki/Ivan_Pavlov.

[6] ragraph: http://www.qosient.com/argus/.

