
; LO G I N : O C TO B E R 201 0	 SECU RE EM A I L FO R MO B I LE D E V I CES	 29

B R I A N K I R O U A C

secure email for
mobile devices
Brian Kirouac is the CTO and a principal
security consultant for Security Horizon, Inc.,
and a faculty member of the University of
Advancing Technology. He has an MS in both
computer science and management, as well
as a few certifications, including the CISSP,
PCI-QSA, ISRM, and ISAM. He is a contributor
to The Security Journal and a co-author of IT
Security Interviews Exposed: Secrets to Land-
ing Your Next Information Security Job.

bkirouac@securityhorizon.com

F O R S M A L L B U S I N E S S E S , S E T T I N G U P
mobile devices to send and receive email
is fairly easy. Most smartphones can guide
the user through the configuration process.
The default configurations use plaintext
(unencrypted) connections. Configuring
these devices to connect in a secure manner
takes more work. If you wish to do this on
the cheap and use self-signed certificates,
there are more steps required. This article
attempts to guide you through the steps to
configure a server to provide, and a mo-
bile device to utilize, secure email services
cheaply.

For many years I have been a staunch Linux user.
Over the past few years I’ve slowly started to be-
come an Apple fanboy. Started with an iPod, then
an iTouch for my daughter. My first MacBook pur-
chase was two years ago. My latest purchase was
the iPad. I love the combination of toy and work
device (I am writing this article on my iPad as I fly
from COS to IAD). My wife loves the toy part.

Like most of us, I have both work and personal
email accounts. For almost 20 years I have used
ssh tunnels to secure my email connections, both
for work and home. This has worked flawlessly
but only for laptop or desktop use. For my Black-
berry I had to open the IMAP port for connections
from the Blackberry Internet Service (BIS) servers.
I wasn’t overly happy with this but it did serve a
purpose. To get email on my iPad and my employ-
ees’ iPhones something different had to be done.

BIS connections come from a limited-size, known
set of IP addresses. iOs devices connect from all
over the world with no set IP address. My goal was
to enable access to send and receive email on iOs
devices. Being a security company and not wanting
to end up on “The Wall of Sheep” at conferences,
the access had to be secure, meaning strongly
encrypted.

Secure encrypted email access has been around
for a long time: IMAPS, SMTPS, SMTP utilizing
STARTTLS. All of these use SSL to encrypt the
connection. I set up my first Sendmail server with
an SSL certificate close to 15 years ago. This is
nothing new.

Most SMTP servers do not care if you use a self-
signed certificate. Setting up IMAPS for the BIS ac-
cess also allowed the use of self-signed certificates.
The iOs (and Android) devices, on the other hand,

30	 ; LO G I N : VO L . 35, N O. 5

do care. By default these devices will reject self-signed certificates, but the
use of self-signed certificates with these smart devices is doable.

For my home systems, I did not want to fork out the money for a commer-
cial certificate. My company is a small business and did not want to spend
money on a certificate that would only be used for internal employees. By
pure coincidence, one of my customers switched from Blackberry to Droid
and wanted the same type of access to their email. So now my problem was
to create secure email communications for iOs and Android devices, allow-
ing them to both send and receive email through company-controlled serv-
ers. The only resources available are man hours—no funds will be allocated.
Get it done now!

The first thing I did was to use my GoogleFu to see who else has done this. I
received very disappointing results. I could find parts of the process but not
one that covered the complete process. Most of the guides I found referred to
using a script that came with the individual applications; none of them was
a comprehensive guide.

I am going to step through the process I used to configure a server to pro-
vide the required services. These steps must be completed prior to configur-
ing your email accounts on the smartphones. The servers run Fedora Core
or CentOS. The default install for these distributions uses Sendmail for
SMTP and Dovecot for IMAP. For authentication, SASL will be used as pro-
vided by cyrus-sasl. For Webmail we use Squirrelmail on Apache HTTPD
(although this article will limit its discussion of SSL configuration to a gloss
on Apache’s and nothing further).

To follow this how-to make sure you have the following packages installed:

■■ openssl
■■ httpd
■■ dovecot
■■ sendmail
■■ sendmail-cf
■■ cyrus-sasl
■■ iptables

The first hurdle to cross was generating a certificate that could be used
across Sendmail, Dovecot, and Apache. This one certificate will also be for
the global *.company.com domain. The reason for one certificate is to make
it easier on the end users, since they will have to install the certificate on
each of their devices. Some of our clients are not computer-centric and do
not need nor want to understand the underpinnings of the system or jump
through hoops for security. They want things to “just work.”

The system administrator in me desires things to work after an unattended
reboot. So I also have my certificate created without a passphrase. To extend
the time between repeating these steps the certificate is good for 3650 days
(almost 10 years).

The Linux distributions we use come with /etc/pki. In this directory is a set
of folders designed to make things easier for creating and maintaining SSL
certificates. For me this just makes things more complicated than they need
to be. Instead of having folders for each type of service, I prefer just one
folder that holds my certificates.

; LO G I N : O C TO B E R 201 0	 SECU RE EM A I L FO R MO B I LE D E V I CES	 31

Making Certificates

The first step is to find your Certifying Authority certificate. Fedora and
CentOS both come with one already in /etc/pki/tls/certs. This file belongs to
the ca-certificates package.

In this same directory is a Makefile and a script called make-dummy-cert,
which is part of the openssl package. Modifying the make-dummy-cert
script is what I chose to create my certificates in a repeatable manner. List-
ing 1 contains the script after modification. Save this script as make-com-
pany-cert and run it.

./make-company-cert

This will generate three files: companyname-full.pem, companyname-key
.pem, and companyname-cert.pem.

#!/bin/sh
umask 077
The name of the file you wish to generate.
target=”companyname”
The answers to the questions openssl will ask.
answers() {
	 # Country Name (2 letter code) [GB]:
	 echo --
	 # State or Province Name (full name) [Berkshire]:
	 echo Colorado
	 # Locality Name (e.g., city) [Newbury]:
	 echo Colorado Springs
	 # Organization Name (e.g., company) [My Company Ltd]:
	 echo Company Name, Inc.
	 # Organizational Unit Name (e.g., section) []:
	 echo IT Department
	 # Common Name (e.g., your name or your server’s hostname) []:
	 echo *.companyname.com
	 # Email Address []:
	 echo root@companyname.com
}

PEM1=`/bin/mktemp /tmp/openssl.XXXXXX`
PEM2=`/bin/mktemp /tmp/openssl.XXXXXX`
trap “rm -f $PEM1 $PEM2” SIGINT
answers | /usr/bin/openssl req -newkey rsa:1024 -keyout $PEM1 -nodes -x509
-days 3650 -out $PEM2 2> /dev/null
cat $PEM1 >> ${target} -key.pem
cat $PEM2 >> ${target} -cert.pem
cat $PEM1 > ${target} -full.pem
echo “” >> ${target} -full.pem
cat $PEM2 >> ${target} -full.pem
rm -f $PEM1 $PEM2

L I S T I N G 1 : M O D I F I E D V E R S I O N O F M A K E _ D U M M Y _ C E R T S F O R
C R E A T I N G S E L F - S I G N E D C E R T I F I C A T E S

Configuring Servers to Use SSL

Adding this certificate to Apache HTTPD was easy. By default the mod_ssl
module is installed with the configuration file /etc/httpd/conf.d/ssl. Edit this
file and change the following lines:

32	 ; LO G I N : VO L . 35, N O. 5

■■ Add the newly created certificate to the configuration file.

SSLCertificateFile /etc/pki/tls/certs/companyname-full.pem

■■ Comment out the other certificate lines.

SSLCertificateKeyFile
SSLCertificateChainFile
SSLCACertificateFile

The next step was to add the certificate to Dovecot. Edit the file /etc/dovecot.
conf. For the protocols line choose:

protocols = imap imaps

Regular unencrypted IMAP is left for those still using the ssh tunnels, as I
did not want to deal with changing everyone’s configuration. We do not set
up POP or POPS, so email stays on the server, where it can be backed up. If
the user removes the email from the server to their laptop/desktop, we are
no longer responsible for backing it up.

To configure Dovecot to use the SSL certificate, edit the following lines.

ssl_cert_file = /etc/pki/tls/certs/companyname-cert.pem
ssl_key_file = /etc/pki/tls/certs/companyname-key.pem

The next beast to slay is the line noise configuration of Sendmail. Adding
the generated certificate to the configuration is easy. Go to the directory /etc/
mail and edit the file sendmail.mc and add the following lines:

define(‘confCACERT_PATH’, ‘/etc/pki/tls/certs’)dnl
define(‘confCACERT’, ‘/etc/pki/tls/certs/ca-bundle.crt’)dnl
define(‘confSERVER_CERT’, ‘/etc/pki/tls/certs/companyname-cert.pem’)dnl
define(‘confSERVER_KEY’, ‘/etc/pki/tls/certs/companyname-key.pem’)dnl

To enable the different submission agents add the following lines:

DAEMON_OPTIONS(‘Port=smtp, Name=MTA’)dnl
	 DEFAULT Port 25
DAEMON_OPTIONS(‘Port=submission, Name=MSA, M=Ea’)dnl
	 DEFAULT Port 587
DAEMON_OPTIONS(‘Port=smtps, Name=TLSMTA, M=s’)dnl
	 DEFAULT Port 465

The next step is to configure Sendmail to use SASL for authenticating users
before allowing them to relay email through your server. First you have to
decide what type of authentication you wish to use. So that my users have
just one password to forget, we use plain authentication which is tied to
their host username and password. (In a possible future article, I’ll discuss
generating and using client certificates for authentication.) To the sendmail.
mc file add the following lines:

define(‘confAUTH_OPTIONS’, ‘A p y’)dnl
TRUST_AUTH_MECH(‘LOGIN PLAIN’)dnl
define(‘confAUTH_MECHANISMS’, ‘LOGIN PLAIN’)dnl

For testing purposes leave the p out of confAUTH_OPTIONS. When the p is
included it will not accept plain text logins over unencrypted connections,
which makes testing the new configuration a bit more complicated.

Generate your new sendmail.cf by running the following while in the /etc/
mail directory:

make sendmail.cf

; LO G I N : O C TO B E R 201 0	 SECU RE EM A I L FO R MO B I LE D E V I CES	 33

Now cyrus-sasl must be configured. By default sasl wants to use it’s own
database of usernames and passwords. This file is /etc/sasldb2. If this file
does not exist sasl will fail and your users will not be able to authenticate.
To create this file I just used touch:

touch /etc/sasldb2

Adjusting the Firewall

To ensure that users can access the newly configured services, iptables needs
to be configured. Edit /etc/sysconfig/iptables and add the following lines
(typically just after the rule to allow ssh (port 22) access):

-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 25 -j
ACCEPT
-A RH-Firewall-1-INPUT -s 192.168.1.0/24 -m state --state NEW -m tcp -p tcp
--dport 143 -j ACCEPT
-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 443 -j
ACCEPT
-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 465 -j
ACCEPT
-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 587 -j
ACCEPT
-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 993 -j
ACCEPT

Now run the following commands to restart the services:

service httpd restart
service saslauth restart
service sendmail restart
service dovecot restart
service iptables restart

Ensure that all of these services are configured to start automatically on
reboot. (I missed this step for one of the services on the customer’s machine.
The customer requested we reboot his server a few days after getting every-
thing working. I missed the saslauth autostart and the user could receive but
not send email with his Droid.)

chkconfig httpd on
chkconfig saslauth on
chkconfig sendmail on
chkconfig dovecot on
chkconfig iptables on

Testing

Now to test and ensure that everything is working. Testing from an exter-
nal source is suggested. Use your browser to test the HTTPS access. Your
prompts and how you view the certificate for HTTPS access will vary from
browser to browser.

To test Sendmail, connect to port 25. Issue an ESMTP hello with ehlo me
and you should get a response back similar to Listing 2. The response
contains the 250-STARTTLS line that shows it allows TLS connections. The
250-AUTH LOGIN PLAIN shows the allowed authorization mechanisms.

Note: If you included the p option to the confAUTH_OPTIONS option in
your sendmail.mc you will not see the 250-AUTH.

34	 ; LO G I N : VO L . 35, N O. 5

user@host# ncat 1.2.3.4 25
220 companyname.com ESMTP Sendmail 8.14.3/8.14.3; Sun, 18 Jul 2010
14:59:55 -0600
ehlo me
250-companyname.com Hello localhost [4.3.2.1], pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-8BITMIME
250-SIZE
250-DSN
250-ETRN
250-AUTH LOGIN PLAIN
250-STARTTLS
250-DELIVERBY
250 HELP
221 2.0.0 companyname.com closing connection
user@host#

L I S T I N G 2 : A F T E R C O N N E C T I N G T O Y O U R S M T P P O R T, Y O U S H O U L D
S E E S T A R T T L S I N T H E L I S T O F E N H A N C E D S T A T U S C O D E S .

To test Dovecot, follow Listing 3. The inclusion of STARTTLS in the wel-
come message shows the certificate has been loaded and encrypted connec-
tions can be used.

user@host# ncat localhost 143
* OK [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REFERRALS ID
ENABLE STARTTLS AUTH=PLAIN] Dovecot ready.
^C
user@host#

L I S T I N G 3 : T E S T D O V E C O T (Y O U R I M A P S E R V E R) B Y C O N N E C T I N G T O
P O R T 1 4 3 A N D L O O K I N G F O R S T A R T T L S A G A I N .

Now reboot your server and test again. Once you are satisfied that the server
is working properly you can start working on the clients.

Client Side

For the clients to accept the self-signed certificate as valid they must install
the certificate on the device or application. Since they cannot get email, the
best way is for them to download via HTTP(S). Copy the certificate to a loca-
tion on the Web server accessible from the mobile device and your laptop/
desktops. Depending on the device or application, the file extension will
be either .crt or .pem. Listing 4 shows the commands I used to move the
certificate files into place.

mkdir /var/www/html/certs
cp /etc/pki/certs/companyname-crt.pem /var/www/html/certs/cert.pem
ln /var/www/html/certs/cert.pem /var/www/html/certs/cert.crt

L I S T I N G 4 : P L A C I N G C E R T I F I C A T E S W H E R E T H E Y C A N B E
D O W N L O A D E D

On Safari/Firefox as well as iOs/Droid devices, open the default Web
browser and connect to the URL http://www.companyname.com/certs/cert.
crt. You will be presented with a dialog box to install the profile on your de-
vice/or application. On the iOs device, this will create a new Profile in your
configuration. This can be viewed under Settings->General->Profiles. Your
profile will be labeled as *.companyname.com.

; LO G I N : O C TO B E R 201 0	 SECU RE EM A I L FO R MO B I LE D E V I CES	 35

On your smartphone/mobile devices you can now proceed to create your
email accounts. During the initial process choose the SSL or TLS options as
offered.

For Thunderbird to accept the certificate, you must download the certificate
to the local machine. You cannot use the “.crt” URL since your browser will
think this is a certificate that needs to be installed. Thus you must use the
URL http://www.companyname.com/certs/cert.pem. Save this file to a good
location. Then within Thunderbird open the Preferences window. Choose
Advanced->Certificates->View Certificates. Use the Import… button to im-
port your new certificate.

You should now be able to check and send email securely from anywhere in
the world where you have Internet connectivity. The fear of appearing on the
Wall of Sheep should also be diminished (this fear should never go away).

Have a happy and secure computing day!

