
52 ; LOG I N : VO L . 3 1 , NO . 6

M A R K B U R G E S S

configuration
management:
models and myths
PA RT 3 : A S HO C K I NG L AC K O F
AD - HO C R ACY

Mark Burgess is professor of network and system
administration at Oslo University College, Norway.
He is the author of cfengine and many books and
research papers on system administration.

Mark.Burgess@iu.hio.no

I N H I S 1 9 7 0 B E ST S E L L I N G BOOK
Future Shock [1], writer Alvin Toffler predict-
ed the demise of bureaucracy. Toffler was a
writer emerging from the 1960s, on the tail
end of the hippie revolution. They were
going to make the world right, optimism
was in the air, and everyone saw the pace
of technological change as a force for good.
Today, we are less enamoured by progress
and have fallen back into a stagnant eco-
nomic tumble-drier of selling and consum-
ing that seems to have no vision or direc-
tion. Perhaps that is why Toffler’s vision of
the demise of bureaucracy never really
came about.

Toffler predicted that centralized power structures,
with their rigid procedures for decision-making
and management, designed for a slower age, an
age of little change, would collapse under their
own sluggishness—buckling under the force of a
cultural and technological deluge. Bureaucracies
would be replaced by lean, mean decision ma-
chines, guided by simple principles, and so agile
that they would win over traditional leviathans,
much like mammals sticking out their tongues at
the sauropods. Moreover, people like me, working
in government organizations, would be freed from
the slavery of application-report-archive to live
productive lives full of choice and measured re-
flection. He called this state of affairs ad-hocracy.
Toffler wrote:

Faced by relatively routine problems, [Man]
was encouraged to seek routine answers.
Unorthodoxy, creativity, venturesomeness
were discouraged . . . rather than occupying
a permanent, cleanly-defined slot and per-
forming mindless routine tasks in response
to orders from above, [Man] must [now]
assume decision-making responsibility—and
must do so within a kaleidoscopically
changing organizational structure built upon
highly transient human relationships.

That is what Toffler said about the human work-
place in 1970. This well-meaning sermon has
admittedly not taken the human world by any
great storm, as we attest from experience (though,
if we are being fair, it has indeed made inroads).
What I find ironic is that we are now reliving an
almost identical discussion in a different sphere.
Today, we are struggling to accept the same wis-

dom in the area of computer management. It will take the next two parts
of this series to do this subject justice.

Strategies in theWar Against Tera

What is a good strategy or algorithm for computer management? Few would
argue against the idea that the sheer size of systems today practically necessi-
tates automated tools. (Recall Ken’s law: Always let your tool do the work.)
Certainly I believed this in 1993 when I started writing cfengine, and today
IBM certainly believes it and flags it with its Autonomic Computing initia-
tive. Toffler pointed out that automation does not necessitate production-line
thinking, in which one mass-produced identical copies—a world in which
one can have any color as long as it’s black. On the contrary, he argued that
“As technology becomes more sophisticated, the cost of introducing varia-
tions declines.’’

But in the management of the information technology itself, we are still
hearing about “ways to mass-produce 1000 workstations, all identical,
from a common source”—golden master servers that are to be worshipped
by hundreds, perhaps thousands, of clones. Ad-hocracy is not the default
doctrine in computer administration.

Ever since the late 1980s, the telecommunications companies have had
their own vision of computer resource management, borrowing from tried
and trusted inventory systems, for warehouse and personnel management,
and trying to modify them to cope with the computing age. In time they
borrowed ideas from software engineering (e.g., object-oriented database
models).

Industry standards organizations such as the renamed Telemanagement
Forum (TMF) and Internet Engineering Task Force (IETF) have continued
to develop models for managing computing equipment that are essentially
bureaucratic. What they perhaps failed to anticipate was the pace at which
the technology would develop (something akin to the rate at which device
drivers have to be written on PCs). Trying to keep up with the schema-
centric definitions for all new products has led to a classic “Tortoise versus
Achilles” race between the development of new technology and the strug-
gle to document the growing zoological inventory. (Cisco’s IOS is surely
the winner of this race.)

For the telecoms, Operational Support Systems (OSS) and Business
Support Systems (BSS) were the order of the day. The idea was simply to
document every device and human procedure exhaustively in a huge data-
base so that help-desk staff would be able to see an overview. Later came
tools that could interact with the devices via a “management console” in
order to write certain values to routers and switches, and even to worksta-
tions and PCs. Today, the legacy of these approaches is still with us; they
still cling to life, even today in the largest corporations, but they are still
wailing (or yawning) from their tar pits.

The complexity of those systems is legendary. No sane engineer, in his or
her right GHz CPU, would seriously try to build such a monster. Yet, in
the wake of these support systems, designed for the telephone era, the
same knowledge engineers attempted to create the new generation of
forms and processes that would manage the computing age. Among today’s
species:

� SNMP/MIB: A hierarchical table-based data structure (the Management
Information Base) that is mapped into a linear set of machine-readable

; LOGIN: DECEMBER 2006 CONFIGURATION MANAGEMENT: MODELS AND MYTHS, PART 3 53

identifiers. The values associated with these identifiers are simply read
or pushed into place by the SNMP read/write protocol. The algorithmic
complexity is very low. The data complexity is a simple regular approx-
imation to a context-free language.

� SID: Shared Information and Data model. This is an information model
that is used in both NGOSS and DEN-ng. It includes services and orga-
nizational containers in an object-oriented framework.

� CIM: Common Information Model. An information model that pro-
vides an exhaustive replacement for MIB.

� NGOSS: The TMF describes this as a “comprehensive, integrated
framework for developing, procuring and deploying operational and
business support systems and software.” It includes the SID and eTOM
standards. It is a complete organization map.

� DEN(-ng): Directory Enabled Networks. This is a model that is com-
plementary to SID. It focuses on modeling network elements and ser-
vices, using an interpretation of policy-based management. DEN-ng
products and locations are subsets of the SID.

I challenge readers to look up the data models on the Web to see just how
complex they truly are. The DEN-ng and SID initiatives are trying to move
away from a MIB-like catalog of device attributes to an overview of an
organization and its resources. In particular, the notion of services is an
important addition.

Even equipped with these big guns for pattern description, and having the
most eager blue-collar beavers to register all of this information, the efforts
of these engineers ultimately seem to have fallen on deaf ears. No one real-
ly seems to want these systems—not even their key designers. Why? As
the Soviet Union or European Union or even the State of the Union will
testify, bureaucracy is just too expensive.

What’s on the Yellow Brick Road?

The data models mentioned here have sufficient linguistic complexity to
describe the patterns we would expect to manage in an organization, just
as we predicted in the last issue’s episode, but something is wrong. Toffler’s
warning is ringing in our ears. We seem to be missing a vital part of the
story. Configuration management is not merely about brick-laying and
form-filling.

Configuration management (a pretty low-level animal in the administrative
phylogeny) has become the topic de jour in the UNIX world, perhaps
because it is a technological problem, which tech folks love. But it is not
the beginning or end of any story that we really care about. We have no
real interest in what the configuration of a system looks like. What we
really care about is how to represent the goals of our organizations and
applications using patterns in order to lead to a predictable pattern of
behaviors. This leads us to a hypothesis, which, as far as I know, has not
been convincingly proven:

Hypothesis: There is a direct association between a “correctly
configured computer” and a “correctly behaving computer,” where
“correct” means “policy or specification compliant.”

The essence of this hypothesis is shown in Figure 1. It is not just a matter
of configuring a computer but one of solving the problem of achieving the
correct behavior. Configuration is a static thing; behavior is a dynamic
consequence, but not a fully predictable one.

54 ; LOG I N : VO L . 3 1 , NO . 6

F I G U R E 1 : T H E S T A G E S F R O M P O L I C Y T O B E H A V I O R .
A S T O R Y Q U I C K L Y F O R G O T T E N ?

There are three parts to the story depicted in Figure 1::

� Planning the intended behavioral policies for all parts of a system.
� Mapping this to a configuration that can lead to the correct behavior.
� Implementing the change in configuration reliably.

How do we know that we can complete this manifesto? Is it doable? If so,
can it be done reliably? Well, in 2003, I proved a limited version of this
hypothesis [2], showing only that it is possible to define the meaning of
“policy” in terms of configuration changes so as to lead to predictable
behavior on average. This is not quite the same as the hypothesis posed
here; what it says is that there a restricted language that maps directly to
behavioral consequences, so if we restrict ourselves to that, we are okay.
The part about “on average” is general, and it says that no configuration
management scheme can guarantee that a host will always be correctly
configured, unless the machine is never used.

You Say Tomato and I Say . . . Semantics

According to the first two parts of this series, we have a reasonable account
of how to manage patterns of data (with or without the monstrous data
models that pepper the procedures with structural complexity). These pro-
cedures might be messy, but they are essentially just bureaucratic spaghetti,
somewhat irrelevant to the deeper issues.

If we fix a bit string, such as a file mode, using a numerical value, there is
little ambiguity in the procedure. It seems like a straightforward problem
to write some configuration to a computing device: This is like stamping
out molds from a production line (e.g., chmod 755 filename). It is straight-
forward, easy, and not complex—much like SNMP without MIB. Any com-
plexity lies in the patterns themselves—in the coding of the instructions,
and in understanding what the behavioral consequences of these changes
are. Thus, this is not where the problem lies.

But now consider the expression of policy itself. If we wish to describe an
operation in terms of a high-level procedure (e.g., “InstallPackage(ssh)”)
then this is no longer straightforward, because it is describing the configu-
ration coding only at a medium level, not all the way down to the bits.
This is like saying, “Make me prettier!” It is not a uniquely defined or
reproducible goal. Someone might say that it is their policy to make you
prettier, but you cannot guarantee their behavior from this assertion. (You
might trust them more, if they told you about what end result they were
going to guarantee—see the following.) If we take only a shell of patterns
such as InstallPackage, there can be several (even many) nonequivalent
ways of defining the internal procedures within the language of the low-
level configuration. Consider the following two interpretations of an
InstallPackage command, which are inspired by real examples:

; LO G I N : D E C E M B E R 2 0 0 6 CO N F I G U R ATI O N M A N AG E M E NT: M O D E LS A N D MY TH S, PA RT 3 55

InstallPackage(foo)
Check dependencies
Check if package README exists
if (!exists)

copy package
unpack
run local script

InstallPackage(foo)
Check if existing binary is executable
if (!exists_and_exectuable)

Check dependencies
Copy packages
unpack all
copy files to /usr/bin

The resulting patterns are described and implemented in terms of language
syntax, as we have already noted, and computing is obsessed by syntax
today—but if the complete syntax is missing from the explanation, the call
for InstallPackage is meaningless. Several of the big data models mentioned
here boast a specification written in the Unified Modeling Language (UML),
which is based on an object-oriented syntax (i.e., hierarchical class struc-
tures). Thus it is fundamentally built as a bureaucracy of types. Moreover,
XML has become the bureaucratic memo-paper of choice. XML is no more
than an empty syntax “desperately seeking semantics.”

This is pretty much what happens in configuration management tools. By
attempting to be user-friendly and high-level, many configuration tools
sacrifice operational clarity for human readability. Trying to define configu-
ration in terms of such vague high-level precepts is like trying to tell a
story like this:

A man (motion-verb) into a (drinking-place-noun) and (communica-
tion-verb) a drink.

We can fill in many alternatives that lead to grammatically correct
sentences, i.e., which obey a pattern language that is recognized by our
system. But the patterns all mean quite different things, or perhaps nothing
at all. There is no clear way to say that what we meant was “a man walks
into a bar.”

If we are to successfully govern systems, either externally or autonomically,
we need to be able to complete the chain from top-level goals, to a clear
and reproducible set of operations, to a definite configuration that leads to
predictable behavior. This is not an impossible task, but it is far from
guaranteed.

How to SayWhat YouMean

At the 2001 cfengine workshop (later followed up by Paul Anderson and
opened to a wider community, becoming the configuration management
workshop), a discussion almost became an argument. My friend Steve
Traugott, bless him, told me I was wrong. Thunderclaps sounded, screams
were heard. Tempers were enraged. In the meantime, Alva Couch and I
were quietly interested in Steve’s point as others were doing battle over it. I
thought, “Clearly, I was not wrong; I am surely never wrong,” and yet
Steve pressed his point, which has since been studied in detail by Alva
Couch and which I have come to understand better as I have pondered the
matter using different reasoning. Of course, neither of us was wrong, but,
importantly, something was learned.

56 ; LOG I N : VO L . 3 1 , NO . 6

The matter concerned two design strategies that have been discussed for
constructing configuration management schemes:

� We specify the final state and leave it up to the program to figure out
the details of getting there.

� We specify the starting point and a specific program of steps to take.

For reasons we won’t go into yet, these were labeled “convergence” and
“congruence,” respectively. To borrow Alva Couch’s terminology, we can
rather refer to these as precondition-based and postcondition-based
specifications.

Ultimately, I believe that the first of these is preferable for a number of
reasons, including parsimony, consistency, and aesthetics (stay tuned), but
the real difficulties associated with configuration management are present
in both cases. They cannot be avoided simply by choosing one.

In both cases there is the matter of how it is possible to change from the
old state to the new state. Suppose a computing device is in a state that is
not consistent with policy. We require a procedure, whether that means a
static bureaucratic procedure or a lean-mean entrepreneur procedure, to fix
it. In the first case (postcondition), we define this procedure generically,
like a template, once and for all (i.e., we define what we want to get out of
“make me prettier”). In the latter, we define the procedure in each case,
making it potentially inconsistent. Steve said we can still achieve consis-
tency by always starting from a known state and following a precise chain
of preconditioned actions, meaning that if a computer gets messed up, you
wipe it clean and start over. This is a reasonable approach to take if one
thinks in production-line terms about configuration management, but this
is not my vision.

Mass Production Undone

Production-line factory thinking requires a chain of preconditions. When
you create a chain of operations that depends on previous operations, each
step is preconditioned on what came before. If one step fails to be imple-
mented, all subsequent steps fail (e.g., “I’m sorry, sir; I can’t make you
prettier; your nose is in the way.”).

This is fair enough—we just have to figure out how to get it right without
getting stuck. That might be possible, but in fact it is harder than in the
postconditional case, because the compositional complexity of the approach
has to be dealt with in one go, whereas it only has to be dealt with for one
operation with postconditions. But the real problem with preconditions is
that the approach fails to easily support a wide variety of different adapta-
tions. It takes us back to Toffler’s fear of the totalitarian-commie nightmare
of mass production of a single unvarying model.

Oddly, in system administration, many still worship the totalitarian gods of
mass production. The god of small things, to paraphrase Arundati Roy, is
still being trampled by the heavy boots of bureaucratic thinking.

Suppose we assume that the postcondition model is possible (cfengine uses
this approach, so it works at least in some limited capacity). Then we can
(at least try to) never base an operation on something that came before.
Then the order no longer matters, and only the final state is significant.
Now, although this approach is achievable, in principle, it is also beset
with problems. Its chief selling points are:

� Consistent semantics.
� Specification of the final state is often simpler than specification of the
steps needed to get there.

; LOGIN: DECEMBER 2006 CONFIGURATION MANAGEMENT: MODELS AND MYTHS, PART 3 57

� You do not have to wipe out a machine if something goes wrong; the
system can adapt in real time.

Its main problem is a residual ordering ambiguity caused by creation and
deletion and competitive adaptation.

Black Boxes and Closures

The inner workings of bureaucracy are generally opaque, but for reliable
administration this is not necessarily a bad thing. Black boxes are a main-
stay in computing because they hide inner complexity and also protect
inner details from outside corruption.

As Alva Couch and his students have pointed out, the computer science
black-box notion of closure gives us a level of predictability, by locking out
the environment that generally confounds predictability. This is the same
environment that can screw up chains of preconditions, as Alva’s work has
taken some pains to model in detail. The trouble is that, although closure
is easily implemented for things such as database transactions, it is quite
difficult to implement in the area of system administration, because sys-
tems are constantly being exposed to the environment by uncontrollable
backdoors. Moreover, they often share an operational state (routing tables,
databases, etc.) that breaks open closures.

The story of order-independent operations is also rather nontrivial and is
based on a very low-level approach to operational semantics. With cfengine,
the focus has been on this approach (some think too much so), and hence it
often fails to provide higher-level expressivity, which other projects such as
Luke Kanies’ Puppet are trying to remedy (hopefully keeping the low-level
semantics intact). Paul Anderson has long told me that he sees cfengine as a
low-level language that one compiles down to. This seems sensible to me. In
the meantime, together with Alva Couch, I am developing a more precise
theoretical model for these low-level semantics that will eventually be incor-
porated into cfengine 3.

Even if a configuration is reachable without any ordering problems, there
are some features of behavior that depend on the order. This has to do
with the fact that creation and deletion are catastrophic state-destroying
operations that break commutativity on present-day operating systems. It
is conceivable that one could build an operating system that did not have
this property, but it would be quite difficult. A fair approximation would
not be too hard to build, however, so we could have commuting operations
and the order of procedures would be entirely irrelevant to the final state.

The King Is Dead: Long Live the Laissez-Faire Army

Humans beings have a remarkable capacity to view the world in terms of
subordination, and system administrators are no exception. You’d think
we’d all done military service or were trying to establish ourselves as king
or emperor by conquering fourth-world tribes of disorganized computers
and sending them for Pygmalion execution lessons on how to behave in
the Kingdom of the Data Center.

In the 1990s, as telephonic empires were crumbling, small-business entre-
preneurship invaded this turf and took computer management in a differ-
ent direction. Small furry businesses started making it up as they went
along, thanks to tools such as small computers, UNIX, and ad hoc solu-
tions of Windows and Macintosh. With an excitement for progress rather
than control, mammals evolved and dinosaurs were left floundering. The

58 ; LOG I N : VO L . 3 1 , NO . 6

UNIX world has bothered itself little with the data models mentioned here:
cfengine, Isconf, LCFG, and of course every site’s home-brew scripts have
been much more ad hoc in their approaches—with almost devil-may-care
informality. And yet they work. Why?

In Future Shock, Toffler related an important insight, an insight that it is
appropriate for us to relearn. His point was this: In the 1960s, as we
remained scared of the looming presence of communism, it was assumed
that the industrial age and the rise of technology meant a future that was
mass-produced, in which everything was the same—there was no variation
and no choice, just an overwhelming amount of factory produce, because
the duplication of fixed pattern was marching to the tune and beat of
industrial nations’ sternest baton.

What Toffler realized was that better technology allows one to manage
more variety, greater diversity, and, importantly, greater choice. We do not
have to fear diversity. What, after all, is the point of information technolo-
gy if not to manage the complex array of specially tailored blueprints?
What is the reason for improving management of productivity if not to
cater for the whims and desires of minorities and special interests?

The weight of bureaucratic constraints just to maintain a large information
model is overwhelming. It is too slow. If you are attached to a fleet of steel
balls by a cat’s cradle of elastic bands, your best career choice is not that of
acrobat.

A Bearable Lightness of Being

There is a myth that, if you do not control something, the result will be
chaos. There is a belief that, if you do control something, its behavior will
be in accordance with your wishes.

I believe that there is some linguistic confusion at the heart of this debate.
The word we want is not “control,” because that is a word of hubris. You
can tame a horse but you will never control it. There is a world of differ-
ence between control and management. Toffler pointed out the answers in
1970. We are fighting the wrong battles.

Rising novelty renders irrelevant the traditional goals of our chief
institutions. . . . Acceleration produces a faster turnover of goals.
Diversity or fragmentation leads to a relentless multiplication of
goals. Caught in this churning, goal-cluttered environment, we stag-
ger, future shocked, from crisis to crisis, pursuing a welter of con-
flicting and self-cancelling purposes.

The real measure of intellectual achievement is to take something complex
and make it simpler—by suitable abstraction. Anyone can make excruciat-
ing syntax, an exhaustive list, or a database of every possible detail. There
is absolutely no evidence that tight bureaucracy leads to greater pre-
dictability. What can lead to predictability is clearer semantics—perhaps
with a lighter touch.

In the next episode, I want to dispel a related myth: why centralization is
not the necessity that has generally been implied.

REFERENCES

[1] Future Shock, A. Toffler (Random House, 1970).

[2] “On the Theory of System Administration,” M. Burgess, Science of
Computer Programming 49, 1–46, 2003.

; LOGIN: DECEMBER 2006 CONFIGURATION MANAGEMENT: MODELS AND MYTHS, PART 3 59

