
; LO G I N : D E C E M B E R 2 0 0 6 A DVA N C E D H O N EY P OT- BA S E D I NTR U S I O N D E TE C TI O N 17

J A N G Ö B E L , J E N S H E K T O R , A N D
T H O R S T E N H O L Z

advanced
honeypot-based
intrusion detection
Jan Göbel has an M.Sc.in computer science from
RWTH Aachen University and wrote his diploma the-
sis on “Advanced Honeynet-based Intrusion
Detection.” He is currently working at the Center for
Computing and Communication at RWTH Aachen.

goebel@rz.rwth-aachen.de

Jens Hektor holds an M.Sc. degree in physics from
RWTH Aachen University. Afterwards, he joined the
Center for Computing and Communication there. He
is responsible for the network infrastructure of the
university and developed the first version of Blast-o-
Mat.

hektor@rz.rwth-aachen.de

Thorsten Holz holds an M.Sc. degree in computer sci-
ence from RWTH Aachen University and is currently
a Ph.D. student at the University of Mannheim. His
research focuses on honeypots and honeynets and
currently one main area of work is botnets.

thorsten.holz@informatik.uni-mannheim.de

AT R W T H A A C H E N U N I V E R S I T Y, W I T H
about 40,000 computer-using people to
support, we have built a system to detect
infected machines based on honeypots.
One important building block of Blast-o-
Mat is Nepenthes, which we use both to
detect malware-infected systems and to
collect malware. Nepenthes is a low-inter-
action honeypot that appears as vulnerable
software but instead decodes attack code
and downloads malware.We have been
successful at uncovering and quarantining
infected systems with sensors listening at
0.1% of our address space. Investigation of
collected malware has led to discovery of
many infected systems and even a huge
cache of stolen identity information.

The Internet has evolved into a platform for all
kinds of security-sensitive services and applica-
tions. Online banking and payment have become
part of today’s way of life. For this reason, even
home computers store valuable information such
as passwords to online shops, credit card num-
bers, account data, and personal identification
numbers. Therefore, securing network hosts,
learning attack methods, capturing attack tools,
and studying motives of computer criminals are
important tasks for network administrators and
security engineers.

One important aspect of network attacks is mali-
cious software (malware) that spreads autono-
mously over the network by exploiting known or
unknown vulnerabilities. In the form of network
worms or bots/botnets—networks of compromised
machines that can be remotely controlled by an
attacker—malware poses a severe threat to today’s
Internet. For example, botnets cause damage from
Distributed Denial-of-Service (DDoS) attacks,
sending of spam, identity theft, and similar mali-
cious activities.

Within the university network, we want to detect
infected hosts as fast as possible. Only if we detect
a compromised machine can we contain it and
stop the spreading mechanism. This cessation pro-
tects other vulnerable hosts within the university
network and also within external networks.
Instead of using a classical Intrusion Detection
System (IDS), we have built our own solution
called Blast-o-Mat. This system aims at automatic
notification and handling of malware-infected



hosts. The main task of Blast-o-Mat is to determine the person responsible
for a system for which it receives an alert, send out a warning to the
owner, and, if an infected host is still active after a certain period of time,
block network access to and from this host. It is automatically transferred
to a quarantine network (i.e., all access to the Internet is rerouted to a cer-
tain server). Basically, the infected machine can then only access certain
sites to download patches and (in the future) also antivirus software.
Within the quarantine network, we can also monitor what happens to the
machine from a network point of view. As a result, we have a tool that
automatically performs the time-consuming tasks that the network admin-
istrator normally has to carry out.

The system consists of several modules that try to detect an infected system:

� Blast-Sniffer continuously reads traffic data from a SPAN or mirror port
of a central router of the network and writes it to a MySQL database.
This database serves as the input for the next two intrusion detection
sensors.

� Blast-PortScan detects hosts that are scanning a large number of IP
addresses for certain ports, which could indicate a malware-contami-
nated machine. To accomplish this task, the module counts the num-
ber of TCP SYN packets sent by each host during a preconfigured
period of time. Within our environment, a threshold of 50 SYN packets
within three minutes has proven to be a reasonable indicator that tends
not to generate false positives and is capable of detecting infected hosts
efficiently.

� Blast-SpamDet aims at detecting machines that send spam messages.
Similar to the portscan detector, it counts the number of initiated con-
nections from a suspicious host, but this time only connections to mail
servers are considered. When a certain number of connections are
made, the server entity, with the help of packet-capture tools, starts to
gather email header information of the suspected host. All used sender
addresses are filtered and counted. If the number of unique sender
addresses exceeds a certain threshold, further actions are initiated.

� Nepenthes is a low-interaction honeypot solution that is capable of
automatically downloading malware. We describe its inner workings in
a separate section. We use this module to get in-depth information
about ongoing network attacks, and the analysis of the downloaded
binary can help us to further examine the incident.

In the following, we give a brief background of honeypots and then intro-
duce Nepenthes in detail. We show how this low-interaction honeypot can
be used to detect infected machines, and we explain possible ways to iso-
late such compromised hosts. Finally, we highlight some incidents detected
within the past couple of months.

Background on Honeypots and Honeynets

A honeypot is “an information system resource whose value lies in unau-
thorized or illicit use of that resource” [1]. This methodology has been
used to study attackers and types of attacks in depth, providing valuable
information about tools, tactics, and motives of attackers. To learn more
about malware, we use low-interaction honeypots such as Nepenthes [2] and
high-interaction honeypots such as GenIII honeynets [3].

Low-interaction honeypots emulate services or operating systems. They
allow an attacker limited interaction with the target system and allow us to
learn mainly quantitative information about attacks. Since low-interaction

18 ; L O G I N : V O L . 3 1 , N O . 6



honeypots use simulation, they construct a controlled environment and
thus the risk involved is limited. We give a more detailed introduction to
low-interaction honeypots in the following section.

In contrast, high-interaction honeypots do not emulate any services, func-
tionality, or operating systems. Instead, they provides real systems and
services, allowing us to capture extensive information on threats. Several
honeypots can be combined into a network, called a honeynet. We can cap-
ture the exploits of attackers as they gain unauthorized access, monitor
their keystrokes, recover their tools, and learn what their motives are. The
disadvantage to high-interaction solutions is that they have increased risk:
Because the attackers can potentially fully access the operating system,
they can potentially use it to harm other nonhoneypot systems.

A honeynet creates a fishbowl environment that allows attackers to interact
with the system, while giving the operator the ability to capture all of their
activity. This fishbowl also controls the attacker’s actions, mitigating the
risk of them doing harm to any nonhoneypot systems. The key element
in a honeynet deployment is called the Honeywall, a layer-two bridging
device that separates the honeynet from the rest of the network. This
device mitigates risk through data control and captures data for analysis.
Tools on the Honeywall allow for analysis of an attacker’s activities. Any
inbound or outbound traffic to the honeypots must pass through the
Honeywall. Information is captured using a variety of methods, including
passive network sniffers, IDS alerts, firewall logs, and the kernel module
known as Sebek [4]. The attacker’s activities are controlled at the network
level, with all outbound connections filtered through both an intrusion
prevention system and a connection limiter.

Neither of these two approaches is superior to the other; each has unique
advantages and disadvantages.

CollectingMalware with Nepenthes

The low-interaction honeypot Nepenthes aims at capturing malicious soft-
ware such as network worms or bots that spread in an automated manner.
The main focus of this application is to obtain the malware itself, i.e., to
download and store the malware binary for further in-depth analysis.
Unlike other low-interaction honeypots, Nepenthes does not emulate full
services for an attacker to interact with. The key idea is to offer only as
much interaction as is needed to exploit a vulnerability. For this reason,
Nepenthes is not designed for any human interaction, as the trap would be
easily detected. On the contrary, for the automated attack just a few gener-
al conditions have to be fulfilled, thus maximizing the effectiveness of this
approach. These conditions usually include displaying the correct banner
information of an emulated service and sending back specific information
at certain offsets during the exploitation attempts. Therefore, the resulting
service is only partially implemented. This allows deployment of several
thousands of virtual honeypots with only moderate requirements in hard-
ware and maintenance.

Nepenthes is designed as a single-threaded core daemon, with a number of
different modules, facilitating each task of the malware collection process:

� Vulnerability modules emulate the vulnerable parts of network services.
� Shellcode parsing modules analyze the payload received by one of the

vulnerability modules. These modules analyze the received shellcode,
an assembly language program, and extract information about the
propagating malware.

; LO G I N : D E C E M B E R 2 0 0 6 A DVA N C E D H O N EY P OT- BA S E D I NTR U S I O N D E TE C TI O N 19



� Fetch modules use the information extracted by the shellcode parsing
modules to download the malware from a remote location.

� Submission modules take care of the downloaded malware (e.g., by sav-
ing the binary to a hard disk, storing it in a database, or sending it to
antivirus vendors).

� Logging modules log information about the emulation process and help
get an overview of patterns in the collected data.

Besides the modular structure, Nepenthes provides an event-driven notifi-
cation mechanism. Each step of an attack triggers certain events, which
other modules can register and therefore react on. As a result, Nepenthes
can be highly customized to fit into new environments.

We briefly describe the three most important kinds of modules in more
detail in order to give a better understanding of the operation of Nepen-
thes.

Vulnerability modules are the main reason for the efficiency of the
Nepenthes platform. The main idea—only emulating the vulnerable parts
of a service—has already been explained. We only need to emulate the rel-
evant parts and are thus able to efficiently implement this emulation.
Eventually, we receive the actual payload, which is then passed to the next
type of module.

Shellcode parsing modules analyze the received payload and automatically
extract relevant information about the exploitation attempt. Currently, only
one shellcode parsing module is capable of analyzing all shellcodes
received in the wild. The module works in the following way: First, it tries
to decode the shellcode. Most shellcode is obfuscated with an XOR
encoder. An XOR decoder is a common way to “encrypt” the native shell-
code in order to evade intrusion detection systems and string-processing
functions. After decoding the code itself according to the computed key,
this module then extracts more information from the shellcode (e.g., cre-
dentials). If enough information can be reconstructed to download the
malware from a remote location, this information is passed to the next type
of module.

Fetch modules have the task of downloading files from remote locations.
Currently, there are several different fetch modules. The standard protocols
TFTP, HTTP, and FTP are supported. Since some bots use custom protocols
for propagation, there are also fetch modules to handle these bot-specific
protocols.

The modularity and flexibility of Nepenthes allow for the deployment of
unique features not available in high-interaction honeypots. For example,
it is possible to emulate the vulnerabilities of different operating systems
and computer architectures on a single machine during a single attack
(e.g., an emulation can mimic the generic parts of a network conversation
and, depending on the network traffic, decide whether it needs to be a
Linux or a Win32 machine).

The source code of Nepenthes is available under GPL at http://nepenthes
.mwcollect.org. In addition, a more detailed introduction, together with
preliminary results, is also available [2].

20 ; L O G I N : V O L . 3 1 , N O . 6



N E P E NTH E S A S PA RT O F A N I D S

Within the Blast-o-Mat architecture, Nepenthes serves as a sensor to detect
infected machines. These machines typically try to propagate further by
scanning for vulnerable machines. Thus we have placed Nepenthes sensors
all over the network and on each of these IP addresses they emulate com-
mon vulnerabilities, as already explained. We use about 180 IP addresses
to cover three /16 networks, thus covering about 0.1% of all addresses.
Nevertheless, preliminary results show the effectiveness of this approach.
One important finding is that Nepenthes has not generated any false posi-
tives: Whenever Nepenthes signals a successful exploitation attempt, it is
not a portscan or misconfigured system, but a real intrusion attempt. To
this point, the Blast-o-Mat system has already detected hundreds of infect-
ed machines and the automatic containment works without problems.

M ITI G ATI O N O F I N F E C TE D SYSTE M S

As soon as an infected system has been detected, the first question entails
how to deal with it. Presumably the best way is to immediately take the
system offline, giving it as little chance as possible to infect other systems
in the network. The inhibition can take place on any of the OSI layers,
depending on the given infrastructure. If direct access to the switch port of
the conspicuous machine is given, one can disable this port. In this case
the host is locked at the physical layer of the OSI model. An inhibition on
layer 2 is equal to blocking the MAC address of the hostile host. This
approach would also prevent the system from being taken online again on
a different switch port. The disadvantage of these two methods is the effort
it takes to determine to what network device the contaminated machine is
connected. Less costly is the locking of the IP address with the help of
access lists (OSI layer 3). In this case, we need to determine the router,
which routes the appropriate network. Although the host is properly
blocked, it can still infect systems within the same local area network
(LAN). On higher layers of the OSI model, it is possible to lock certain
TCP or UDP ports or operate different protocol-specific filters to isolate an
infected host. However, all modifications to network components have to
be reverted as soon as the problem is solved and the user wants to get back
online.

A different approach to taking a contaminated host offline is to place it
into a quarantine network, isolating it from other systems. Although this
requires a certain infrastructure, this is the most effective solution, as addi-
tional information can be collected from the quarantined host. Currently,
we have implemented a simple form of such a quarantine network: The
Blast-o-Mat is capable of redirecting HTTP traffic of infected machines to a
special Web server. Before taking a look at the practical implementation of
this approach, we introduce two ways to actually block the infected host.

When blocking, we differentiate between two groups of users: static IPs
(normally staff people or PC pools) and dynamic IPs (typically WLAN
users).

To identify the responsible person(s) for hosts with static IP addresses, we
maintain an XML-based database with all relevant information. For each
subnet the database contains the registered administrators, their phone
number and email address, the net mask, the acronym of the institute, and,
if available, the assigned Virtual Local Area Network (VLAN) number.
Additionally, for each entry there exists information about the manageable
network router through which the associated subnet is routed. To lock a

; LO G I N : D E C E M B E R 2 0 0 6 A DVA N C E D H O N EY P OT- BA S E D I NTR U S I O N D E TE C TI O N 21



host with a static IP address, use is made of a Perl script capable of auto-
matically creating antispoofing access lists. These access lists can be
extended with firewall rules or, in our case, with lists of locked machines,
thus efficiently blocking contaminated hosts from accessing the network.

To identify the person responsible for a dynamically assigned IP address,
we have to ascertain the account name from the authentication or account-
ing server. Therefore, we have to compare the IP address and the time of
the incident with the information stored in the Radius server. We run a
slightly modified version of the FreeRadius software, which writes its
accounting data to a MySQL database, on a daily basis. Thus, we have a
database table for each day, which greatly accelerates the process of search-
ing for specific accounting data. The account locking of an infected host is
accomplished by setting a special flag in the LDAP database, which is used
for user authentication. Once the flag is set, a user with an infected ma-
chine can no longer connect to the campus network and has to contact the
helpdesk to be unlocked again.

One of the more complicated tasks in automatic locking of infected sys-
tems is to notify the user of the suspected host. Our main method is to
notify any responsible person via email. Since every student at RWTH
Aachen gets his or her own email address upon enrollment, we have a fair-
ly good possibility of reaching any student. The obvious limitation is that
we cannot besure that the students read their university email frequently
or even at all. Therefore the Blast-o-Mat is capable of redirecting certain
traffic to a specially designed Web server (as briefly mentioned above).
Because of the network structure at RWTH Aachen, the redirection cur-
rently works only for the wireless network, but we hope to extend this in
the future. All traffic of wireless hosts has to pass one central gateway.
Thus, we are able to efficiently redirect any traffic of hostile hosts at this
point, via the use of certain iptables rules. The main advantage of this
approach is that the responsible person of a redirected host is efficiently
informed, even if the warning mail of the Blast-o-Mat is not read. Every
attempt to open a Web site on a redirected host displays the information
site of the quarantine Web server, showing all gathered data about the inci-
dent so far. Furthermore, email delivery is still possible, allowing the user
to get additional information, provided in the Blast-o-Mat warning mes-
sages.

To achieve the redirection of a contaminated host, the Blast-o-Mat remotely
executes a Python script on the gateway server and transmits the account
name, the IP address, and the time the system was online as parameters.
The easiest way would be to do the redirection based on the IP address of
the infected host. But since we have to deal with dynamically assigned
addresses, this would not prevent the user from logging in again with a dif-
ferent IP address, thus circumventing the redirection measures. Therefore,
we have to determine the MAC address of the offending machine. This is
accomplished with the help of an additional script which queries the
DHCP server with the time the host was online and its IP address as
parameters. Every DHCP server maintains a lease file, containing all MAC
addresses of hosts to which it assigned an IP address, together with the
time interval the given IP address is valid. With the help of this file, we are
able to determine the MAC address of the system that was online with a
certain IP during a given time. As a result, the script generates an iptables
rule that redirects any further HTTP traffic of the specified MAC address to
the quarantine Web server.

A more advanced solution to building a quarantine network would involve
VLANs: As soon as a host is detected by the Blast-o-Mat, the VLAN tag for

22 ; L O G I N : V O L . 3 1 , N O . 6



this machine is changed to the tag of the quarantine network (which could
be a honeynet). As a result, all traffic is redirected. The major drawback of
this concept is that it requires the network infrastructure to allow access to
the switch port of each host; additionally, the switch must support VLAN
tagging of certain ports.

In the next section, we take a closer look at one particular alert generated
by Nepenthes.

AModern Trojan:Haxdoor

During one security incident detected by Nepenthes in April 2006 we
noticed a strange behavior of the infected machine: It constantly tried to
post data to a certain PHP file located on a server in the United States.
Since the machine had already been moved into the quarantine network,
we could observe it further. We noticed that sensitive data—in this case
passwords—was sent to the remote server. A closer examination revealed
the URL from the HTTP requests and we quickly noticed that these
requests were caused by a variant of Haxdoor, one of the most advanced
Trojans in the wild.

In addition to the normal Trojan capabilities, such as copying itself to the
Windows Installation Directory and start on reboot, Haxdoor also imple-
ments rootkit capabilities and advanced identity theft mechanisms. It can,
for example, hide its presence on the compromised machine via SSDT
(System Service Dispatch Table) hooking, as well as steal all information
entered into Internet Explorer. All of this captured information can be sent
to a central server, which is precisely the activity we observed within the
quarantine network.

During further investigation, we found several log files that contained all
information stolen from all infected machines. In total, these log files con-
tained more than 6.6 million entries, amounting to 285 MB of data. This
data was stolen from the compromised machines between April 19 and April
27, 2006, i.e., within only nine days. In total, we found evidence of more
than 39,000 IP addresses that were victim of this particular Haxdoor infec-
tion. These numbers show the effectiveness of this kind of attack.

The log files contained full detailed information about more than 280 bank
accounts and several credit card numbers. All major German banks were
victim of this incident and several large brands from the e-commerce sector
were also targeted. In addition, the attacker also collected sensitive infor-
mation such as username and password combinations and other data
entered into HTML forms from the victims’ computers. More information
about this kind of modern data theft can be found in the article by Team
CYMRU in this issue of ;login: [5].

We handed this information over to DFN-CERT, the Computer Emergency
Response Team responsible for German research and education networks.
The affected users were warned, as were universities, ISPs, and other
affected sites.

B I N A RY A N A LYS I S

Sandboxing is a well-established approach that involves executing the mal-
ware in an emulated environment and monitoring its behavior. During
preparation of a diploma thesis at our lab, Carsten Willems developed a
sandbox named CWSandbox [6]. Preliminary results show that CWSand-
box is able to efficiently and accurately analyze a given malware binary.

; LO G I N : D E C E M B E R 2 0 0 6 A DVA N C E D H O N EY P OT- BA S E D I NTR U S I O N D E TE C TI O N 23



The tool is able to extract all important information from a given binary in
an automated way within a short amount of time (usually three minutes).
The extracted information includes information about changes to the
filesystem or the Windows registry, process access, DLL handling, and net-
work communication. The whole analysis process does not require any
human interaction and can be parallelized, allowing for concurrent analy-
sis of large amounts of data.

The information in the following paragraphs is based on the reports gener-
ated by CWSandbox, enriched with information retrieved via manual bina-
ry analysis. We analyzed eight different variants of Haxdoor. All of them
share many characteristics. The following description is a generalization of
the different Haxdoor variants.

Typically, this specimen of malware creates several different files in the
Windows installation folder. By default, this is either C:\Windows (Win-
dows 2000 and XP) or C:\Winnt (Windows NT). The created files normal-
ly include two Dynamic Linked Libraries (DLLs), three to four drivers
(SYS), and several additional configuration files. For example, according to
Bitdefender, the variant Haxdoor.IN creates the following files: sndu32.dll
and qm.dll (same as sndu32.dll), sndu64.sys and qm.sys, and stt82.ini,
klgcptini.dat, and stt82.ini.

Upon executing, the binary loads several DLLs. These include the typi-
cal Windows DLLs such as kernel32 or ntdll but also network-related
DLLs such as wsock32 and the code within the newly created files. One
characteristic sign of Haxdoor is the creation of a mutex with the name
RasPbFile.

Haxdoor also interacts with the Windows registry to enable a mechanism
to be started upon reboot. In contrast to other malware, which commonly
adds a registry key under Run or RunService, Haxdoor is more advanced.
It uses a mechanism to auto-load via Winlogon or even during SafeBoot.
The corresponding registry keys are:

HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\Notify

HKLM\SYSTEM\CurrentControlSet\Control\SafeBootMinimal

HKLM\SYSTEM\CurrentControlSet\Control\SafeBootNetwork

Via the Windows Service Control Manager (SCM), Haxdoor also adds a ser-
vice to the infected system that is automatically started upon system startup.
The name of the service varies; it can, for example, be “SoundDriver SDB64”
or “UDP32 netbios mapping,” depending on the variant. In addition, it cre-
ates a remote thread within the memory space of Explorer.exe, in order to
add some further services. Moreover, Haxdoor has some advanced tricks to
hide its presence on the infected system, and it is hard to get rid of it. This
topic is, however, beyond the scope of this article; more information can be
found on the Web sites of antivirus vendors.

Conclusions and Future Research

The Blast-o-Mat IDS had been running for about seven months as of
September 2006, efficiently handling malware-infected hosts in the campus
network of RWTH Aachen. With the help of the honeypot Nepenthes and
the additional intrusion sensors, so far a total of 361 incidents have been
detected. A little more than one-third were reported by Nepenthes, with
the rest split between the Blast-PortScan and Blast-SpamDet sensors. The
PortScan sensor reported the most incidents, owing to its much larger

24 ; L O G I N : V O L . 3 1 , N O . 6



number of monitored ports than vulnerability modules. However, each
portscan that was detected on a port for which a vulnerability module
exists was detected by Nepenthes as well.

Although its missing vulnerability modules means that Nepenthes does not
recognize exploit attempts on all ports, it has proven to be a great intru-
sion detection mechanism. The biggest advantage is its accuracy, as no
false positives are reported, as well as the high detection ratio, with only a
few IP addresses assigned. Currently, we are monitoring with Nepenthes
less than 0.1% of the complete IP space and already achieve almost the
same results as the Blast-PortScan sensor, which receives its data from a
SPAN port of a centralized router.

Because the bandwidth of current large-scale networks such as the one of
RWTH Aachen already exceeds 1 gigabit of traffic and can approach 10
gigabits, common SPAN port monitoring will no longer work without the
use of specialized and expensive hardware. However, Nepenthes will still
deliver the same quantitative results with just 180 IP addresses. Therefore,
it serves as a future-proof intrusion detection sensor, capable of running on
a normal off-the-shelf computer.

In addition to the detection of contaminated hosts, Nepenthes also cap-
tures the malware that is trying to exploit the emulated vulnerabilities.
Thus, we are able to submit the collected binaries for further analysis to
different applications, such as virus scanners, to determine the kind of
malware, or to the CWSandbox, to find out more about the behavior of
malicious software. As a result, we are able to supply a qualitative high-
class report for the detected incidents, both to help clean infected
machines and to raise the user’s security awareness.

AC K N OW L E D G M E NTS

We would like to thank Sam Stover for reading a previous version of this
paper and giving valuable feedback that substantially improved its presen-
tation. In addition, we would like to thank the Nepenthes Development
Team for implementing such a wonderful tool.

R E F E R E N C E S

[1] The Honeynet Project. Know Your Enemy: Honeynets (May 2005):
http://www.honeynet.org/papers/honeynet/.

[2] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling, “The
Nepenthes Platform: An Efficient Approach to Collect Malware,” 9th
International Symposium on Recent Advances in Intrusion Detection, RAID06,
Hamburg, Germany, September 20-22, 2006, Proceedings, Lecture Notes in
Computer Science (Springer, 2006).

[3]E. Balas and C. Viecco, “Towards a Third Generation Data Capture
Architecture for Honeynets,” Proceedings of the 6th IEEE Information
Assurance Workshop, West Point (IEEE, 2005).

[4] The Honeynet Project. Know Your Enemy: Sebek (November 2003):
http://www.honeynet.org/papers/sebek.pdf.

[5] Team Cymru, “The Underground Economy: Priceless,” ;login:, this issue.

[6] CWSandbox—behavior-based binary analysis: http://www.cwsandbox.org/.

See also T. Holz, “Spying with Bots,” ;login:, 30 (6) (Berkeley, CA, 2005):
18–23.

; LO G I N : D E C E M B E R 2 0 0 6 A DVA N C E D H O N EY P OT- BA S E D I NTR U S I O N D E TE C TI O N 25


