
48 ; L O G I N : V O L . 3 1 , N O . 6

M I K E H O W A R D

how often should
you change your
password?
Mike Howard came into programming from systems
engineering and has been stuck there. He currently
makes his living doing custom software and system
administration for a few small companies.

mike@clove.com

F O L K L O R E T E L L S U S T H AT W E N E E D
to change our passwords fairly frequently.
In fact, it is required by the security policy
of many companies. I recently revisited the
problem and have concluded that changing
passwords doesn’t really matter.

The issue came up because a client for which I
have worked for about twenty years recently sold
two of its divisions to a major company. The new
owners—as you would expect—have all kinds of
security requirements and security specialists and
policies and what not. In contrast, our security
policy was almost nonexistent, not enforced, not
policed, and implemented only on privileged
accounts. In spite of this, we have never been suc-
cessfully penetrated from the outside.

Admittedly, the company is not a significant tar-
get, but looking at the secure logs on the Linux
systems on our public networks revealed that they
had been subject to fairly continuous, automated,
low-level probing. I once made the mistake of
misconfiguring an Apache server so it could
become an open mail relay and that was almost
instantly discovered and used—so automated
probing is effective.

During the time we had public networks—well
over eight years—we had only changed the root
password once and had had that same administra-
tive password on all the servers. We have had
dial-in connections for well over twenty years
without a break-in. (Although attack through a
dial-in port seems unlikely, I personally learned
early on that even an unlisted phone number is
not safe: I had an early Xenix system cracked
when I sloppily configured it without a root pass-
word.)

So I got curious.

This note is a summary of what I came up with. A
more detailed note, “How often should you change
your password—or should you bother?” is avail-
able at www.clove.com/clove_tech/tech_notes.

Throughout this note, I use the letter k to denote
the cumulative number of password crack
attempts, N for the total number of probable pass-
words, and Pk for the probability of being cracked
after k crack attempts.



Effect of Changing Passwords: Pk
If you think about it for a minute, cracking passwords is a classical “draw-
ing with (or without) replacement” probability problem. If I have a sack
containing N − 1 black balls and a single white one, then guessing a pass-
word is equivalent to pulling a ball out of the sack. If I leave the ball out,
then that is the same as not changing my password. If I put it back each
time, then that is changing my password after each attempt.

In the first case, Pk = k/N.

In the second case, Pk = 1 − (1 − 1/N)k.

For anything else, the probability must be someplace in between.

I made the reasonable assumption that we want to keep k << N—that is,
we want our number of crack attempts to be much less than the number of
probable passwords. If this is true, then we get a good approximation for
the “continuously changing password” case of Pk ≈ k/(2N).

So, in general k/(2N) ≤ Pk ≤ k/N, where you need to take the left ≤ with a
small dose of salt.

So, no matter how often you change your password, it doesn’t have much
effect on the Pk—the probability that your password will be cracked.

All that matters is keeping k small relative to N. In other words, we want k
(number of crack attempts) small and N (number of probable passwords
the cracker has to probe) large.

Probable Number of Password:N

The number of probable passwords a cracker has to test is under the con-
trol of the users. That is, we usually pick our own passwords. As a result,
passwords are generally constructed of words, pseudo-words, and num-
bers. A few brave souls add punctuation and other things, but my sense of
things is that this is rare. For the most part, we use words.

This is important, because our use of words severely limits the size of N.
For example, if we construct five-character passwords from the lowercase
alphabet alone, we will have 1.2x107 possible symbols. Words, however,
are more restrictive.

To get a handle on this, I downloaded the King James Bible, The Federalist
Papers, and A Short Biographical Dictionary of English Literature from the
Gutenberg Project and wrote a little code to do a naive analysis. It turned
out that the three texts only contained 106 words, of which 2.7x104 were
distinct. In fact, there were only 2,283 five-character words and only 3,271
eight-character words.

It is clear that using words is dangerous, because N is far too small.

In our case, we generate passwords using a system based on folklore:

� We create a five- to eight-character alphabetic string by selecting a sin-
gle word or concatenating two short ones together.

� We then randomly capitalize a few letters.
� Finally, we insert a couple of digits.

When I analyzed this scheme using the words in my aforementioned docu-
ments, it expanded the number of eight-character passwords from 3x103 to
8x1012. If you are willing to use ten-character passwords, this goes up to
7x1014. Again, see “How often should you change your password—or

; LO G I N : D E C E M B E R 2 0 0 6 H OW O F TE N S H O U L D YO U C H A N G E YO U R PA S SWO R D ? 49



should you bother?” for more details at htttp://www.clove.com/clove
_tech/tech_notes.

The Teracrack project [1] used a dictionary from “crack” containing about
5x107 passwords to create a precomputed password hash of about 2x1011

entries. Briefly, the Teracrack project tested the feasibility of speeding up
cracking by precomputing password hashes used by the crypt algorithm.
The project was able to demonstrate that crypt is unsafe because the hash
database fit within 1.5 terabytes of disk—an amount easily affordable
nowadays. If the size of the password hash scales roughly linearly, then this
algorithm should expand the hash requirements by five orders of magni-
tude—say, to something on the order of 1016 for eight-character pass-
words—and so require something on the order of 1.5x105 terabytes. This
is a fairly simple change which should move the storage requirements of
this technique out of reach for a little longer. This is not an endorsement of
crypt, which has been known to be deficient for at least twenty years.

Variations of this scheme yield different effects. Here are some rules of
thumb:

� Adding one character of password length increases N by a little less
than a power of 10.

� Inserting an additional digit increases N by about a power of 10.
� Replacing letters with digits helps a little, but much less than inser-

tions.

Our experience is that passwords of this form are fairly easy to type from
memory—after practicing a few times—even though it is often difficult to
remember how to write them down with a pencil.

As a side project, I looked at the effect of case-insensitive password
schemes—which are common with certain large computer manufacturers.
In general, they reduce the number of probable passwords using this
scheme by about two orders of magnitude for short passwords and three
for longer passwords (of length 11 or 12).

Case sensitivity in password schemes is very important.

Controlling k

The value of k is not static. It grows as crackers attempt to crack and sys-
tem administrators and system software vendors do nothing about it. It has
nothing to do with users and their changing of passwords.

Crackers appear to be building nets of robots that mechanically attack sys-
tems. There is not much we can do about that other than detect crack
attempts and shut them down.

I made some off-the-cuff computations and came up with an estimate of
3x108 crack attempts per year per host by assuming that the system is
exposed to one crack attempt per second. This gives a Pk of about 0.0001
per year for an eight-character password.

Referring back to why I started thinking about this in the beginning, we
see that, in our case, we had seven hosts on the public net and experienced
nowhere near that crack attempt rate, so this explains why we were not
cracked. Our Pk was well below 0.006 [0.0001 x (7 hosts) x (8 years)],
which is pretty good odds of not being broken into.

To digress for a moment, we and crackers have different points of view.
From our point of view, we don’t want to be cracked, so these are fairly
good odds. However, from most crackers’ point of view, they are also good

50 ; L O G I N : V O L . 3 1 , N O . 6



odds because he or she probably just wants to crack some system—not
necessarily a particular one. So if he or she attacks 100,000 systems in an
automated way, then one should burst open often enough to be interesting.
This is kind of a sick win-win situation for both sides.

I don’t want to have one of those systems, so I did the obvious thing—
devise a way to detect crack attempts and cut them off. If I cut off hosts
that attempt to crack my system more than, say, five tries in an hour, then
the cracker needs to control a vast number of systems to be effective
against me.

To do this, I wrote a short hack which monitors /var/log/secure to detect
crack attempts on ssh and firewall-off suspicious hosts. The code requires
Python 2.4, is GPL’ed, and could easily be adapted to monitoring for other
types of crack attempts—say, against Apache servers. Again, see
www.clove.com/clove_tech/download/.

Conclusion

Changing passwords frequently is a doomed strategy.

The important thing to do is keep Pk small by bounding the rate of growth
of k and constructing passwords so that N is large, both of which are easy
to do.

R E F E R E N C E S

[1] T. Perrine, “The End of crypt() Passwords . . . Please?”
;login: (December 2003): 6–12.

; LO G I N : D E C E M B E R 2 0 0 6 H OW O F TE N S H O U L D YO U C H A N G E YO U R PA S SWO R D ? 51


