26

ANDY OZMENT AND
STUART E. SCHECHTER

the security of
OpenBSD

MILK OR WINE?

Andy Ozment is a Ph.D. student in the Computer
Security Group at the University of Cambridge. He
will graduate in July 2007. This article describes work
performed in part when Andy was on the technical
staff at MIT Lincoln Laboratory.

andy.ozment@ieee.org

Stuart E. Schechter is a researcher in computer secu-
rity at MIT Lincoln Laboratory. He explores security
problems as they relate to system design, economics,
and user interfaces. Ironically, Stuart can neither
digest milk nor tolerate the taste of wine.

ses@]].mit.edu

88

o _

0
®
B
g 87
o
o
E
8 91
%
S
[0
£ R
E LI

[
7 405502 o

283 25 27 29 31 33 35 37

Version

FIGURE 1: THE NUMBER OF VULNERABILITIES
INTRODUCED IN EACH VERSION RELEASED
DURING THE STUDY

;LOGIN: VOL. 31, NO. 6

PURCHASE A FINE WINE, PLACE IT IN
a cellar, and wait a few years: The aging will
have resulted in a delightful beverage, a
product far better than the original. Pur-
chase a gallon of milk, place it in a cellar,
and wait a few years. You will be sorry. We
know how the passing of time affects milk
and wine, but how does aging affect the
security of software?

Many in the security research community have
criticized software developers both for releasing
software with so many vulnerabilities and for the
lack of any apparent improvement in this software
over time. However, critics have lacked quantita-
tive evidence that applying effort over time will
result in software with fewer vulnerabilities. In
short, we don’t know whether software security is
destined to age like milk or has the potential to
become wine.

We thus investigated whether or not the rate at
which vulnerabilites are reported in OpenBSD is
decreasing over time. For a more technical de-
scription of this work, see [1].

Vuln

erability Data

We compiled a database of 140 vulnerabilities
reported in the 7.5 years between 19 May 1998
and 17 November 2005. Vulnerabilities were iden-
tified by merging data from the OpenBSD security
Web page and four public vulnerability databases:
NVD (formerly ICAT), Bugtraq, OSVDB, and 1SS
X-Force.

Figure 1 shows the number of vulnerabilities that
were “introduced” in each of the fifteen versions
of OpenBSD that were released during our study.
A vulnerability is counted as having been intro-
duced in a version if that version is the first to
contain the vulnerability within its source code.

How do we know when a vulnerability was intro-
duced? Vulnerability or patch reports often list the
versions affected by that vulnerability; however,
vendors and vulnerability hunters rarely bother to
test more than two or three versions back. So vul-
nerability and patch reports are not a sufficiently
accurate means of finding the release in which a
vulnerability was introduced.

Instead, when vulnerabilities were reported, we
used the patch to identify the vulnerable code in
the OpenBSD CVS repository. We then tracked
that code back through all the previous versions

of OpenBSD until we could identify when it had first been checked into
the code base. The first release that included that vulnerable code is the
release to which the vulnerability is attributed.

Our analysis covers all portions of the OpenBSD code in the OpenBSD
team’s primary CVS repository. This includes the X-windowing system, the
Apache Web server, and many additional services not traditionally consid-
ered to be part of the core operating system. However, it excludes the
“ports” collection of third-party software, which is not officially part of
OpenBSD. We started our study with version 2.3, which we refer to here as
the “foundation version,” because it was the first source-code stable release
for which all reported vulnerabilities are documented.

During the study, versions of OpenBSD were released approximately every
six months. The vulnerabilities that were introduced in each version were
usually checked into the CVS repository during the six months prior to that
version’s release. For example, the vulnerabilities attributed to version 2.4
were introduced in the six months between its release and the release of the
prior version. The one exception to this rule is the foundation version (2.3):
all vulnerabilities introduced before this version’s release are attributed to
this version. This includes more than twenty-five years since coding on
Berkeley UNIX began. As a result, we see in Figure 1 that 62% of the vulner-
abilities reported during the study were introduced in the foundation version.

Source Code Evolution

The majority of vulnerabilities reported during the study were thus intro-
duced sometime prior to the release of the foundation version. But now,
7.5 years later, does the security of the foundation version have any rele-
vance to current versions of OpenBSD?

To answer this question, we investigated the proportion of the source code
in the most recent version of OpenBSD that remains unchanged since each
earlier version. Figure 2 shows the results of our analysis. Each column
represents a composite version; each row represents a source version that
contributes code to the composite. A line of code in a composite version of
OpenBSD is said to originate in a source version if the line was last modi-
fied in that source version. The column for version 2.3 is composed of a
single row: By definition, all code in this foundation version is said to orig-
inate in it. For each successive version, a new row is added to the column
to represent the lines of code that were altered or introduced in that release.

20

15

Lines of code contributed by
each earlier version (millions)
10

o - | L___]__|

23 25 27 29 31 33 35 37

Composite version

FIGURE 2: THE COMPOSITION OF THE FULL SOURCE CODE

;LOGIN: DECEMBER 2006 THE SECURITY OF OPENBSD 27

Identifying how the source code evolved over time was a difficult project.
We first preprocessed each version of the source code. Only files with the
suffix .c or .h were retained, and all comments were stripped. We then
compared each version with each successive version. We used diff to com-
pare files with the same path and filename. The diff tool was instructed to
ignore changes in whitespace and the location of line breaks. Finally, we
counted the number of lines in each version that were unchanged from the
immediately prior version. By recursively repeating this process, we
obtained the data in Figure 2.

The resulting estimate of code commonality is highly conservative. The
diff tool marked code lines as changed even for trivial alterations such as
variable renaming and some types of reformatting—and the OpenBSD team
has been reformatting the code base. In addition, if a file from a previous
version was moved or copied to a new location and if even one line of the
file in the new location was changed, our analysis will treat the entire file
as new. Furthermore, if the name of a file is changed, then all of the code
in that file is treated as new. Our comparison results will thus understate
the degree to which later releases are composed of that is substantively
unchanged from earlier releases.

Despite our conservative methodology, Figure 2 shows that unchanged
code from the foundation version still comprises 61% of the code in ver-
sion 3.7—which was released over seven years later. The security of the
source code for the foundation version is thus still pertinent to the security
of the source code in current versions of OpenBSD.

However, there is another startling result that is visible in Figure 2. The
number of lines of source code contributed by the foundation version to
each composite version changes over time. That, in itself, is unsurprising.
What is surprising is that the number of lines increases. How is it that the
foundation version contributes more lines of code to version 3.7 than were
in the foundation version itself? We discovered that the lines of code
derived from the foundation version increases over time because develop-
ers reused source code files in different locations. For example, one copy of
a compression library file may be used to generate a shared library while
another copy of the same file may be used to compile the kernel. Code
recycling via source-file replication causes a net increase in the lines of
code that are present in later versions.

Several large alterations and/or introductions of code stand out in Figure 2:
versions 2.6, 2.9, and 3.5. The magnitude of the changes in versions 2.6
and 3.5 is primarily due to a large number of files being renamed and
slightly altered. Our current methodology thus overstates the number of
new lines of code and understates the contribution of code derived from
earlier versions. The changes in version 2.9 are caused in part by the
renaming of files; however, they were also the result of a major upgrade of
the XFree86 package.

Milk or Wine?

Let’s return to our original question: Does software security improve with
age? Unfortunately, we don't have enough vulnerability reports to analyze
most versions of OpenBSD. Only the foundation version provides us with
enough information: 87 “foundational vulnerabilities” were reported. Our
question then becomes: Is the rate of vulnerability reporting for OpenBSD
version 2.3 decreasing?

28 ;LOGIN: VOL. 31, NO. 6

;LOGIN: DECEMBER 2006

We use three different approaches to answering this question. First, we
divide the study into two halves and count the number of vulnerabilities
reported in each half. Figure 3 shows the result, with confidence intervals
calculated by assuming that vulnerability reporting is a homogeneous
Poisson process. The number of vulnerabilities reported significantly
declines from the first half (58 vulnerabilities) to the second (28 vulnera-

bilities).
70 =
60 -
50 -
40 =
30 -
20 -
10
O =

1 2

Number of vulnerabilities

Study half

FIGURE 3: THE NUMBER OF FOUNDATIONAL VULNERABILITIES
REPORTED DURING EACH HALF OF THE STUDY

The next approach is to utilize a Laplace test, in which the discovery of
vulnerabilities is assumed to be a heterogeneous Poisson process. The test
assesses whether the interarrival times of vulnerability reports are decreas-
ing. We use as our data the number of days elapsed from the identification
of one foundational vulnerability to the next.

When the calculated Laplace factors are less than the lowest horizontal
dotted line in Figure 4, the data indicates a decreasing rate of vulnerability
reporting, with a two-tailed confidence level of 95%. The test finds evi-
dence for a decrease in the rate of vulnerability reporting by the end of
year four; by year six, the evidence for a decrease in the reporting rate is
statistically significant. This test therefore also supports the conclusion that
the rate at which foundational vulnerabilities are reported is declining.

w

©

i

.............................. 95% g

B ® o o £ o 2 s s s s s s s s s s s s e s s e s s s e s s 90% -

:
I

‘o ° s

g O‘@ g

S *, o

B A0 IS8 6 a6 00600060004 A 90% °

.................... %de‘ﬂ . los% 3

1

\o g

E

0 1 2 3 4 5 6 7
Vulnerability age (years)

FIGURE 4: LAPLACE TEST FOR THE EXISTENCE AND DIRECTION
OF A TREND IN THE RATE OF VULNERABILITY REPORTING

THE SECURITY OF OPENBSD

29

30

;LOGIN: VOL. 31, NO. 6

In our third approach, we attempt to fit reliability growth models to our
data. Although normally applied to the more random discovery of defects,
these models can also be applied to the reporting of vulnerabilities. We
analyzed the data with seven time-between-failures reliability growth mod-
els. One of the seven models had acceptable one-step-ahead predictive
accuracy and goodness of fit for the data set: Musa’s logarithmic model.
According to this model, the number of vulnerabilities expected to be
reported on a given day decreases from 0.051 to 0.024 over the course of
the study. Furthermore, it estimates that 67.6% of the vulnerabilities in the
OpenBSD 2.3 source code have now been found.

Each of our three approaches thus indicates that the rate of foundational
vulnerabilities reported is decreasing.

CAVEATS

The rate at which vulnerabilities are discovered and reported depends on
the level of effort being expended by vulnerability hunters. To measure
how much more difficult it has become to find vulnerabilities over time,
we would need to normalize the rate of discovery by the effort being exert-
ed and the skills of those exerting it. Unfortunately, vulnerability reports
do not include estimates of how many individuals were involved in exam-
ining the software, the time they spent, or their relative skills. Our analysis
thus can only show that, in the vulnerability hunting environment that
existed during our study, the rate of vulnerability reporting decreased for
the foundation version.

While We’re at It

Our data prompted us to consider two other questions:

= What is the median lifetime of a vulnerability?
= Do larger code changes have more vulnerabilities?

To answer the first question, we calculate the median lifetime of reported
vulnerabilities for the foundation version. The median lifetime is the time
elapsed between the release of that version and the death of half of the vul-
nerabilities reported in that version. Alas, we don’t know how many vul-
nerabilities remain in the foundation version or when they will be found.
As a result, we can provide only a lower bound on the median lifetime.
The result is striking: It took at least 2.6 years to find half of all the foun-
dational vulnerabilities that would be found during the 7.5-year study
period.

The second question is related to “vulnerability densities.” Software engi-
neers have examined the defect density of code: the ratio of the number of
defects in a program to the number of lines of code. Some have argued that
any well-written code can be expected to have a defect density that falls
within a certain range (e.g., 3—6 defects per thousand lines of code). Our
second question is thus whether or not there is a linear relationship be-
tween the number of lines of code altered and/or introduced in a version
of OpenBSD and the number of vulnerabilities introduced in that version.

As we cannot measure the total number of vulnerabilities present, we
measure the number discovered within four years of release for each ver-
sion that is at least four years old. Figure 5 illustrates the relationship
between the number of lines of altered and/or introduced code and the
number of vulnerabilities reported. Neither a visual examination of the fi-

;LOGIN: DECEMBER 2006

gure nor Spearman’s tho test finds a correlation between the number of
lines of code altered and/or introduced in a version and the number of vul-
nerabilities introduced.

© 7 °
o -
[72]
.0
e 7
= 0
=8)
°g ° °
8 o« 4o o
[S
3
2
o (-]
T T T T T T
18 19 20 21 22 23
Number of lines of code
(log base 2)

FIGURE 5: THE NUMBER OF VULNERABILITIES INTRODUCED
AND REPORTED WITHIN FOUR YEARS OF RELEASE COMPARED
TO THE NUMBER OF LINES OF CODE ALTERED OR INTRODUCED,
BY VERSION

When calculated per thousand lines of code, the density of all reported vul-
nerabilities ranged from 0 to 0.033 and averaged 0.00657. There appears to
be no trend with respect to the densities increasing or decreasing in newer
code. These vulnerability densities are thus three orders of magnitude less
than the normal range of defect densities. However, the two figures are not
necessarily contradictory: Defects include both vulnerabilities and bugs
that are not vulnerabilities. Furthermore, multiple identical security defects
that were discovered at the same time are considered a single vulnerability
in our data.

Conclusion

Over a period of 7.5 years and 15 releases, 62% of the 140 vulnerabilities
reported in OpenBSD were foundational, that is, they were present in the
code at the beginning of the study. It took more than 2.6 years for the first
half of these foundational vulnerabilities to be reported.

We found that 61% of the source code in the final version studied is foun-
dational: It remains unaltered from the initial version released 7.5 years
earlier. The rate of reporting of foundational vulnerabilities in OpenBSD is
thus likely to continue to greatly influence the overall rate of vulnerability
reporting.

We also found statistically significant evidence that the rate of foundational
vulnerability reports decreased during the study period. We utilized a relia-
bility growth model to estimate that 67.6% of the vulnerabilities in the
foundation version had been found. The model’s estimate of the expected
number of foundational vulnerabilities reported per day decreased from
0.051 at the start of the study to 0.024. We thus conclude that the founda-
tion version of OpenBSD is like wine: It is growing more secure with age.

THE SECURITY OF OPENBSD

31

DISCLAIMER

This work is sponsored by the I3P under Air Force Contract FA8721-05-
0002. Opinions, interpretations, conclusions, and recommendations are
those of the author(s) and are not necessarily endorsed by the United
States Government.

This work was produced under the auspices of the Institute for Informa-
tion Infrastructure Protection (I3P) research program. The I3P is managed
by Dartmouth College and supported under Award number 2003-TK-TX-
0003 from the U.S. Department of Homeland Security, Science and Tech-
nology Directorate. Points of view in this document are those of the auth-
ors and do not necessarily represent the official position of the U.S. De-
partment of Homeland Security, the Science and Technology Directorate,
the I3P, or Dartmouth College.

REFERENCE

[1] A. Ozment and S.E. Schechter, “Milk or Wine: Does Software Security
Improve with Age?” Proceedings of the 15th USENIX Security Symposium
(Berkeley, CA: USENIX Association, 2006).

save the Date!

www.usenix.org/nsdi07

W P I 97 i 4th USENIX Symposium on Networked

Systems Design & Implementation
&> --- April 11-13,2007 Cambridge, MA

Join us in Cambridge, MA, April 11-13, 2007, for NSDI ‘07, which will focus on the design principles of
large-scale networks and distributed systems. Join researchers from across the networking and systems
community—including computer networking, distributed systems, and operating systems—in fostering
cross-disciplinary approaches and addressing shared research challenges.

NSDI ‘07 will be co-located with the following workshops, all of which will be held on April 10, 2007:
® Second Workshop on Tackling Computer Systems Problems with Machine Learning Techniques (SysML07)
www.cs.duke.edu/nicl/sysmI07

® Third International Workshop on Networking Meets Databases (NetDB '07)
www.usenix.org/netdb07

® First Workshop on Hot Topics in Understanding Botnets (HotBots '07)
www.usenix.org/hotbots07

Sponsored by USENIX in cooperation with ACM SIGCOMM and ACM SIGOPS

;LOGIN: VOL. 31, NO. 6

