NICHOLAS WEAVER AND DAN ELLIS

white worms
don’t work

Nicholas Weaver is a researcher at ICSI specializing
in worms, computer security, and architectures for
high-speed intrusion detection.

nweaver@icsi.berkeley.edu

Dan Ellis recently finished his Ph.D. at George Mason
University. At MITRE, as an infosec scientist, he's been

SEVERAL VOICES HAVE REPEATEDLY
proposed using worms as a tool for fight-
ing other worms, updating systems, and
other security tasks. Such white worms
(also known as anti-worms [2,5,17], preda-
tors [6], or nematodes [1]) have been pro-
posed as a mechanism to counter a spread-
ing worm. The idea is to launch a worm
that spreads to patch the target and make
it immune to the competing worm. Like-
wise, there have been several allegedly
white worms both written (e.g., Code Green
[7]) and released (e.g., Welchia [16] and Anti-
Santy Worm [8]) with the alleged goal of
cleaning up an existing infection.

working on various aspects of worm technology
since 2001.

ellisd@mitre.org

;LOGIN: DECEMBER 2006

Using white worms to immunize from or clean up
after a competing worm is a bad idea for several
reasons. Technically, writing worms to do what is
desired is incredibly difficult. It is difficult to tar-
get a white worm to infect and immunize all of
the machines of interest and only those machines.
Also, getting the worm payload to do exactly what
is desired is hard to do with significant testing, let
alone on the fly in response to another worm.
Consequently, the risk of the worst-case, com-
pounded problem (deploying a damaging payload
across a large number of hosts that do not belong
to you) is practically impossible to mitigate. Even
using a highly controlled worm for penetration
testing on a live network [1] has serious issues.

There are also some significant legal reasons not
to use a white worm. For example, infecting a
machine that one does not own is a serious crime
in most nations, independent of the intentions of
the author of the white worm. Worse, if there is a
problem in the targeting of the worm and the pay-
load of the worm, significant damage is possible,
which could even lead to international conflict if
spread occurs across national boundaries, inde-
pendent of intent or sponsorship [18].

Fortunately, a combination of machine attestation,
automated inventory management, and patch
management offers a superior and acceptable
solution. A combination of these tools provides
mechanisms to distribute patches and protective
instructions faster than all existing worms. Even
better, the fundamental time scale for patch distri-
bution can equal or even exceed the fastest worm
theoretically possible. Any host that could be

WHITE WORMS DON’T WORK

33



34

;LOGIN: VOL. 31, NO. 6

configured in any way to improve or facilitate the performance of a white
worm could also be instrumented with a patch-management system. We
conclude that, without exception, the use of white worms poses an unac-
ceptable risk.

What Is a White Worm?

A white worm, in our definition, is any worm released with allegedly be-
nign intent. The objective could be to patch systems before a malicious
worm is released, to out-compete an already spreading worm, or to clean
up after a worm attack. We use the term white rather than good because
the actions of such a worm may not be deemed beneficial by the owner of
a targeted machine.

In all these scenarios, we assume that the white worm is spreading by ex-
ploiting some vulnerability in a target system, rather than by legitimately
accessing the target machine (e.g., via an authorization daemon installed
on the target). This is simply because if an authorized backdoor or daemon
can be installed on the target computers, then a patch-management system
can be deployed instead.

A patch-management system, in contrast to a white worm, is a purely con-
sensual mechanism. All participating systems contain a small daemon that
is used to receive and apply defensive instructions, including patches and
network filters. Combined with machine attestation systems such as Cis-
co’s Network Admission Control [3], this system can ensure that all sys-
tems within a well-structured corporate network are participating and able
to receive and process updates.

Displacing an Existing Worm

The most commonly proposed application for a white worm is to displace
a malicious worm already in place. Yet it is currently considered standard
procedure for an attacker to close the vulnerability used to exploit the sys-
tem, and we have heard anecdotal reports of even other unrelated vulnera-
bilities being patched. Compromised hosts are a resource to the attacker;
thus, an attacker benefits from preventing that resource from being claimed
by others.

As a specific example, Welchia [16] was called a white worm, because it
removed a competing worm (Blaster) and installed the patch. Yet, Welchia
also contained a malicious payload, opening up a backdoor on infected
systems. Welchia’s patching was really to prevent double-infection and to
remove a competitor that made infected systems unstable.

Displacing a rootkit or worm that takes measures to defend itself can prove
highly difficult. Since a worm author is likely to be less concerned about
the stability of other applications on the target host, there is little motiva-
tion for a defensive worm author not to produce a patch suite. Whereas a
conscientious sysadmin would vet (which may include testing negative
impacts) a patch before applying it, a worm author has little motivation.
Therefore a worm author may decide to patch other vulnerabilities not pre-
viously addressed by the sysadmin. As a white worm would be constructed
primarily using publicly available exploits, it would be very difficult to
successfully infect a previously infected and patched host.

A worm author may get the benefit of limiting access without patching if
infection results in the host becoming invulnerable, which often occurs



when the target application is single-threaded and the exploit never returns
control flow to the victim program. Blaster on Windows 2000 [15], Witty
[11], and Slammer [10] all showed this behavior. Additionally, the worm
author could simply terminate the vulnerable service after infection, unless
the worm author needs to use the vulnerable service or the service is
essential to system operation.

Thus, unless there is a separate vulnerability known by the white-worm
author but not by the original worm author, there is a vulnerability in the
original worm, or the original worm author simply doesn’t care about
being displaced, a white worm can'’t be reliably used to displace an existing
infestation.

Of course, the same problem applies to patch management. It is common
for malicious code to disable antivirus and other defensive applications in
the process of rootkitting a system. Thus, although a white worm cannot
reliably displace a worm, neither can patch management. But this is part of
the general problem of recovering compromised machines, not a specific
limitation of patch management.

Outracing a Spreading Worm

Thus if a white worm is to out-compete a worm that is currently spread-
ing, it must be created dynamically and released very quickly in response
[2]. The problem is that if both worms are equally optimized, the worm
with the head start has an effectively insurmountable advantage. Only if
the anti-worm gets an unmatched performance boost through some other
technique (e.g., hitlisting) can it be expected to compete with the initial
worm.

However, the author of a malicious worm can use these same techniques to
gain a speed advantage, obviating any optimizing effect of the white worm.
Thus, it is best to consider the two worms, the initial malicious worm and
the white worm, as having the same speed, as any speed improvements
that the white-worm author could use could be copied by the author of the
malicious worm.

We conducted a simple simulation using a modified version of the simula-
tor from [14]. At T = 0, a malicious worm is released (300,000 vulnerable
systems, 200 scans/s/worm, 32-bit IPv4 address space). After some speci-
fied fraction of the hosts are infected (0.01%, 0.1%, 1%, and 10%), an
equivalent white worm is released from a single source and spreads at the
same rate as the initial worm. For all but the 0.01% sensitivity, the white
worm was effectively useless, having a negligible impact on the black
worm’s propagation and final infection. But even the supersensitive white
worm, released when 0.01% of the systems are infected by the black worm,
is almost useless, inoculating less than 3% of the victims in the median
case. We conducted 100 simulations and graphed the median case, the case
representing the top 5%, and the case representing the bottom 5% in terms
of effectiveness. This is shown in Figure 1.

;LOGIN: DECEMBER 2006 WHITE WORMS DON’T WORK 35



36

;LOGIN: VOL. 31, NO. 6

300000

====Best 5%
Median el
250000 /!
‘Worst ,/
5% /
200000 it
/i
150000 A
i
i
/ /
100000 [
/ |
50000

Time (m) after worm release

Population Infected with Malicious Worm

FIGURE 1: THE NUMBER OF SYSTEMS INFECTED BY THE BLACK
WORM FOR THREE DIFFERENT SIMULATION RUNS (OUT OF
100), WHEN THE WHITE WORM IS RELEASED AFTER 0.01% OF
THE VULNERABLE SYSTEMS ARE INFECTED. THERE ARE
300,000 VULNERABLE SERVERS.

Even with a supersensitive white worm, released after 0.01% of the sys-
tems are infected, most of the vulnerable population is still compromised
by the malicious worm. This is because even with the highly (even opti-
mistically) sensitive value of 0.01%, the black worm has infected 30 sys-
tems, giving it a nearly 5-generation head start over the white worm. If we
even consider a perfectly timed white worm, equally matched to the mali-
cious worm and released at the same time, the white worm is still expected
to save only 50% of the systems.

Another important aspect of relying on a white-worm-based defense is the
accuracy of the underlying detection mechanism. It is understood in the
worm community that accuracy is the most important issue in developing a
successful worm-detection capability [19]. The cost of a false alarm varies
depending on the response. The best false alarm rates reported are on the
order of just over once per day [4,13]. A false alarm that causes a significant-
ly disruptive event, such as a premade white worm, could be catastrophic.

Disruption from a Worm

One problem with worms is they can be disruptive to the network. For
example, an anti-Slammer, released at the same time as Slammer, would
have proved equally disruptive (at least until the white worm stopped
spreading). In fact, Welchia, owing to a faulty ICMP scanner, was far more
disruptive to the network than Blaster, the worm it was displacing. Blaster’s
traffic was simply normal TCP, and its scanning rate was low. Welchia had
a high-rate ICMP scanner that flooded the local network with unrespon-
sive traffic that caused congestion, and it was Welchia (the alleged white
worm), not Blaster, that disrupted the Navy/Marine Corps intranet [9].

Of course, even if a white worm is released before a malicious worm, the
white worm may prove to be as bad as or worse than the disease. Assume
that the patch deployed by the white worm requires a system reset, but the
original worm does not affect system stability. In this case, the white
worm’s act of resetting a critical but infected system may be more damag-
ing than an unchecked infection by the malicious worm.



;LOGIN: DECEMBER 2006

Additionally, a single-packet UDP worm such as Slammer or Witty will
naturally be disruptive to the network. It would require significant engi-
neering to develop a congestion-sensitive UDP-based worm, and such a
worm would be considerably slower than a malicious worm, which doesn’t
care about fair congestion control.

The Difficulty of Control

Even if a white worm is to be used for another task, such as proactively
patching before a malicious worm can spread, there is still the substantial
difficulty of controlling the system.

If the white-worm author doesn’t a priori know which systems should be
compromised and have provable coverage only over those systems, an
error in this logic could prove catastrophic. The original worm paper by
Shock and Hupp [12] only touched on the real limitations: the havoc
caused by bugs in the worm that either would cause self-propagation
(their model was mobile without duplication) or could disrupt the entire
network.

The one proposal that attempts to address this, Nematodes, postulates
either an end-host allowed token or an authorization server (in either case
patch management could be deployed instead with much lower risk), or a
white graph of allowed traversal topology.

But what happens if there is a failure (i.e., bug or unforeseen circum-
stance) in the white graph? For example, the Nematodes proposal remarks
that attacking 192.169/16 space should be OK if the worm is already in
192.169/16 space (thus the notion of a white graph instead of a list). Yet
what happens if happenstance causes a nematode to end up on a critical
system in someone else’s private address space (e.g., spreading via a laptop
that changes locations and IP addresses)?

This is far worse than the problem of a bad input into a vulnerability scan-
ner. A nematode, by infecting a host, may disrupt the host considerably
more than a vulnerability scanner would. Worse, because of the self-propa-
gating nature, a badly targeted nematode could spread to many more loca-
tions. With a bad entry in a vulnerability scanner, only those hosts affected
by the entry will be discovered. But a bad entry in a nematode’s target data-
base could propagate, affecting far more systems.

The Legal Minefield

It is this difficulty of control that brings up the greatest problem. If the
white worm’s author has legitimate access and control of the systems, he or
she can use a patch-management tool. But if the author does not have
legitimate access and control of the systems the white worm ends up
infecting, the worm’s author or releaser just committed a crime (a felony in
the United States).

Even a nationally authorized white worm could encounter these difficul-
ties. If the worm itself infected a computer in a different country, the laws
of the computer’s location, not of the worm author’s, apply. If the breach of
the white worm or the payload is damaging enough, the victim nation may
perceive it to be an act of war and retaliate commensurately [18]. The
potential for catastrophic political damage, even for a governmentally
authorized worm, is difficult to understate.

WHITE WORMS DON’T WORK

37



38

;LOGIN: VOL. 31, NO. 6

The Alternative: Patch Management

For networks that are controlled, patch management and system attesta-
tion provide all the benefits of a white worm with a much lower risk pro-
file. System attestation (such as Cisco’s NAC [3]) prevents any system from
connecting that is not running a set of administratively mandated software,
such as antivirus and patch-management tools. A patch-management sys-
tem allows the administrator to push code to the systems dynamically.
Using these two capabilities together, it is reasonable to assert that hosts
are attested and up-to-date with the most current patches, assuming they
haven't already been compromised and rootkitted.

Unlike a white worm, attestation and patch management has perfect and
controlled coverage: All systems on which the patch-management software
is installed, and only those systems, are updated. There are no issues with
self-propagating code escaping into the wild. Patch-management systems
are much easier to test than a white worm, as their behavior is more deter-
ministic. Finally, patch-management systems can be intrinsically faster
than a worm, as there is no target discovery, TCP sessions can be preestab-
lished, and, with multicast, the same data can be sent to all systems simul-
taneously.

Patch management, however, is not without cost. It may require additional
software, testing infrastructure, and sitewide policies to deploy. However, a
well-run enterprise already needs a patch-management system to handle
the large number of upgrades and patches for a variety of software pack-
ages. It seems far more reasonable to invest in extending that capability
than it is to invest in a technology whose potential negative impacts are
practically impossible to bound.

Conclusions

The theme of using white worms has recurred roughly annually over the
past few years as one proposal to deal with network worms. Network
worms are a serious threat because they can spread quickly and deploy an
arbitrary payload. It is natural to want to harness that power to do some-
thing useful. One naive proposal is to use them to counter other worms.
However, the potential negative consequences of a white worm solution
are exceptionally grave, because they cannot be practically bounded. Fur-
ther, a patch-management system out-competes white worms in terms of
performance (speed and coverage) and has a far more acceptable risk pro-
file. The capabilities are also technically more mature and cost-effective
than those of white worms. We, therefore, call on the community to dis-
courage the consideration of white worms and focus intellectual effort on
the many other hard problems in computer security.

REFERENCES

[1] D. Aitel. “Nematodes—Beneficial Worms”: http:/www.immunityinc
.com/downloads/nematodes.pdf.

[2] E Castaneda, E. C. Sezer, and J. Xu. “Worm vs. Worm: Preliminary
Study of an Active Counter-Attack Mechanism,” Workshop on Rapid
Malcode (WORM), 2004.

[3] Cisco network admission control: http://www.cisco.com/en/US/netsol/
ns466/networking_solutions_package.html.



