
; LO G I N : O C TO B E R 2 0 0 6 M AY B E YO U S H O U L D U S E PY TH O N 13

M I K E H O W A R D

maybe you should
use Python
Mike Howard came into programming from Systems
Engineering and has been stuck there. He currently
makes his living doing custom software and system
administration for a few small companies.

mike@clove.com

L U K E K A N I E S ’ A R T I C L E “ W H Y Y O U
should use Ruby” in the April ;login: [1]
makes some really good points in Ruby’s
favor. While reading the article, I noticed I
could make all the same points for Python.

Before getting started, I need to make two things
clear.

First, this is not a criticism of Ruby. I’m not sure
which is better, if either is. The important thing
to me is that the features Luke talked about make
programming easier to do and maintain. They
should be part of any modern language.

I also should explain my feelings about Ruby and
Python: I kind of like Ruby, but don’t plan to do
much coding in it. I’ve been writing code in Py-
thon for about five or six years now—beginning
with Python 1.5.2. I like Python’s terse, clear
style. One thing that attracted me to it to begin
with is the thing that bothers Luke—indentation
is mandatory and syntactically significant. How-
ever, I’m not a Python guru—I’ve only written
around 50,000 lines or so.

I was attracted to Ruby because of Rails. I haven’t
written much more than a few thousand lines, but
from what I have seen, it’s a nice language with a
few more rough edges than Python.

The primary difference I see between the lan-
guages are:

n Their age: Python is a few years older and so
has had more time to be cleaned up.

n The approach of the designers: Python is
aimed at succinct code that tends to have
only one method to do any given task; Ruby
is more of a kitchen-sink language, and so
programmers have many equivalent options.

I think the two languages are converging toward
much the same feature set, but with stylistic dif-
ferences. Python is gradually and carefully adding
things, whereas Ruby is slowly discarding things
that are redundant.

Now let’s get to the points Luke Kanies brought up.

Point 1: In Ruby, Everything Is an Object

Python 1.x had two kinds of things: primitives
and objects. Python 2 introduced the “new style
class” and has relentlessly driven the language to
the point where “everything is an object.”

Within Python 2.x, old style classes still exist,
even though for later releases primitives such as

integers and strings are now objects. We are told that the journey will be
complete in Python 3.x.

Luke provides this example of how easy it is to get information about an
object in Ruby:

[Class, “a string”, 15, File.open(“/etc/passwd”)].each { |obj|
puts “‘%s’ is of type %s” % [obj, obj.class]
}

Here is essentially the same code in Python:

for x in [object, “string”, 15, file(‘/etc/passwd’)]:
print “%s is a %s” % (repr(x), x.— class—)

which yields

<type ‘object’> is a <type ‘type’>
‘string’ is a <type ‘str’>
15 is a <type ‘int’>
<open file ‘/etc/passwd’, mode ‘r’ at 0xb755f4a0> is a <type ‘file’>

Point 2: According to Luke, in Ruby There Are No Operators: All Opera-
tions Are Defined by Functions Associated with the Objects Involved

This was not true of Python 1.x, but it is pretty much true in Python 2.4
and above. As everything becomes “an object,” it will be uniformly true, in
the sense it is in Ruby. That is, all operators in the language are imple-
mented using special methods attached to the operands and if the method
doesn’t exist, the interpreter throws an exception.

For example, in Python, x + y is executed as x.— add— (y) or y.— radd(x)— .

Point 3: Introspection

Introspection allows you to find information about objects as they are run-
ning. This contrasts sharply with languages in which programs must be
(almost) completely specified at compile time. Both Ruby and Python have
extensive support for inspecting the visible state of everything.

I’ll only mention two Python features here: the builtin function dir() and
the —doc— attribute.

dir(foo) returns a list of all attributes and methods attached to its argument.
That’s all there is to it:

dir(1.0)
[‘— abs— ‘, ‘— add— ‘, ‘— class— ‘, ‘— coerce— ‘, ‘— delattr— ‘, ‘—
div— ‘, ‘— divmod— ‘, ‘— doc— ‘, ‘— eq— ‘, ‘— float— ‘, ‘— floordiv— ‘,
‘— ge— ‘, ‘— getattribute— ‘, ‘— getnewargs— ‘, ‘— gt— ‘, ‘— hash— ‘,
‘— init— ‘, ‘— int— ‘, ‘— le— ‘, ‘— long— ‘, ‘— lt— ‘, ‘— mod— ‘, ‘—
mul— ‘, ‘— ne— ‘, ‘— neg— ‘, ‘— new— ‘, ‘— nonzero— ‘, ‘— pos— ‘,
‘— pow— ‘, ‘— radd— ‘, ‘— rdiv— ‘, ‘— rdivmod— ‘, ‘— reduce— ‘, ‘—
reduce_ex— ‘, ‘— repr— ‘, ‘— rfloordiv— ‘, ‘— rmod— ‘, ‘— rmul— ‘, ‘—
rpow— ‘, ‘— rsub— ‘, ‘— rtruediv— ‘, ‘— setattr— ‘, ‘— str— ‘, ‘— sub—
‘, ‘— truediv— ‘]

The —doc— attribute contains printable documentation about the object:

print 1.0.— doc—
float(x) -> floating point number

Convert a string or number to a floating point number, if possible.

14 ; L O G I N : V O L . 3 1 , N O . 5

Point 4: In Ruby, Many Objects Know How to Iterate Over Themselves

Rather than writing a conventional, imperative programming style loop,
you can say something like this:

object.each { |x| do something with x }

This is a good thing and such facility has been added to the 2.x versions of
Python, with capabilities increasing with each point release. This is a very
light survey of what Python provides.

Python uses the existing for loop syntax similarly to the way that Ruby
uses the each method. The Python for loop looks roughly like this:

for <list of variables> in <arbitary iterator>:
stuff to do

which is equivalent to calling a block of code with parameters set to the
variables in the list. So the Python for is equivalent to Luke’s Ruby code.

Initially, the <arbitary iterator> was any sequence—a list, tuple, or string.
This has been extended in Python 2.x to anything that satisfies the “itera-
tor protocol” (see below).

In addition, several interesting additions to Python make it easier to use
this construction in more compact, yet clear ways.

L I ST COM P R E H E N S I O N S

List Comprehensions, added in 2.1, are lists defined by one or more
sequences. List Comprehensions generalized the ideas of map(), zip(), and
friends. For example,

[x*x/2.0 for x in range(1,1000) if x%3 == 0]

G E N E R ATO R S

Generators were added in 2.2. A generator looks like a function except that
it contains the keyword yield instead of return. A generator returns an
object that has a next() method. Calling the next method either returns a
value or raises the StopIteration exception. (StopIteration is what now
stops the for loop in Python.)

def myrange(bot, top):
while bot < top:

yield bot
bot += 1

for x in myrange(1,20):
whatever

G E N E R ATO R E X P R E S S I O N S

Generator Expressions, added in 2.4, are essentially lazy list compre-
hensions. That is, a list comprehension realizes the entire list, but a gener-
ator expression just returns the next element. This allows simple iteration
over infinite sequences. To write one, replace the square brackets with
parentheses:

(x*x/2.0 for x in range(1,1000) if x%3 == 0)
(line for x in file(‘/etc/passwd’) if x[0] != ‘#’)

; LO G I N : O C TO B E R 2 0 0 6 M AY B E YO U S H O U L D U S E PY TH O N 15

ITE R ATO R P ROTO CO L

Iterator Protocol, added in 2.2, is a general method for objects to become
iterators. This provides functionality similar to Ruby’s each method. In
brief, if an object defines two special methods, it can replace the list com-
ponent of a for loop. These methods are:

n — iter— (self), which returns a function that acts as an iterator
n next(self), which returns the next item from the object or raises the Sto-

pIteration exception

The imminent release of Python 2.5 will continue this trend and promises
support for co-routines by expanding the capabilities of generators and
unifying Python’s exception-handling code.

Iterators are really cool. They make code both compact and easy to under-
stand.

Point 5: Ruby Has Code Blocks

Ruby code blocks are similar to anonymous functions that can be passed
to methods for execution. I say they are similar because the parameters of
a Ruby code block are existing local variables; those local variables are
then used within the block and their values are changed as a result of the
block’s execution [2]. Ruby code blocks can be arguments of methods, can
be assigned to variables, etc.

Python functions can be manipulated similarly. They can be passed to and
returned from functions. They can be assigned to variables. And they can
be executed in loops that are controlled by iterators. Python function
parameters are always local variables, so they are less prone to unintended
side effects.

In Python, def (function definition) is an executable statement that returns
a function. This makes it easy to write closures:

>>> def foo(x):
... def tmp(y):
... return y < x
... return tmp
...
>>> a = foo(10)
>>> a
<function tmp at 0xb7562b1c>
>>> a(4)
True
>>> a(12)
False

Summary

I agree strongly with Luke that the features he outlined in [1] are excellent
features that should be in all modern programming languages. I also agree
that they are good reasons to use Ruby or Python.

16 ; L O G I N : V O L . 3 1 , N O . 5

R E F E R E N C E S

[1] Luke Kanies, “Why You Should Use Ruby,” ;login: (April 2006).

[2] Dave Thomas, Programming Ruby: The Pragmatic Programmers Guide, 2nd
ed. (Pragmatic Programmers, 2005), p. 51. This scope issue is being debated
within the Ruby community and will probably change in some subsequent
release.

[3] See www.python.org for documentation for all releases, as well as the
code. Many features (implemented and proposed) are described in the PEPs.

[4] David M. Beazley, Python, Essential Reference, 3rd ed. (Sams Publishing,
2006).

; LO G I N : O C TO B E R 2 0 0 6 M AY B E YO U S H O U L D U S E PY TH O N 17

www.usenix.org/osdi06

Sponsored by USENIX,
The Advanced Computing Systems Association,

in cooperation with ACM SIGOPS

Join us in Seattle, WA, November 6–8, 2006, for the 7th USENIX Symposium
on Operating Systems Design and Implementation. OSDI brings together
professionals from academic and industrial backgrounds in what has
become a premier forum for discussing the design, implementation,
and implications of systems software. Sessions include:

• Runtime Reliability Mechanisms
• OS Implementation Strategies
• Distributed Storage and Locking
• Program Analysis Techniques
• And more

See the full program at www.usenix.org/osdi06. Don't miss an outstanding
program covering the best systems software research and practice.
Register online by October 16, 2006, and save!

OSDI ’06 is co-located with the 3rd USENIX Workshop on Real, Large Distributed Systems
(WORLDS ’06), which will take place on November 5. The Second Workshop on Hot Topics
in System Dependability (HotDep ’06) will be held on November 8, immediately following
OSDI ’06. See www.usenix.org/events for more information and to register online.

7th USENIX Symposium
on Operating Systems
Design and Implementation

Nov. 6–8, 2006,
Seattle, WA

Nov. 6–8, 2006,
Seattle, WA

