
18 ; L O G I N : V O L . 3 1 , N O . 5

M A R K B U R G E S S

configuration
management:
models and myths

P A R T 2 : B A B E L , B A B B L E , T O I L ,

A N D G R A M M A R

Mark Burgess is professor of network and system
administration at Oslo University College, Norway.
He is the author of cfengine and many books and
research papers on system administration.

Mark.Burgess@iu.hio.no

T I M E T O P U T T H E A D M I N I S T R AT I V E
house in order? Then you are going to need
a way of describing that house. Configura-
tion management, as discovered in part 1 of
this series, is the management of resource
patterns. If you can’t communicate a con-
figuration pattern, you certainly can’t have
someone create it, verify it, or maintain it.
So, although there are clearly many ways to
build your house of cards, you will need to
learn the language of patterns if you want
to make a bunch of them exactly alike.

Parentheses (and More Parentheses)

Call me not a linguist or a poet by training; my
roots were nurtured in that country on Earth with
surely the worst reputation for knowing foreign
languages (worse even than the United States).
Still, I am uncharacteristically both intrigued and
betaken by language.

(What? “Betaken”? Not a word, you say?
Hmmm . . . stay tuned!)

These days I live in Oslo, in the southern part of
Norway, but I started my life in the northwest of
England. Ironically, this is the part of England
whose culture and language were “impregnated
and borrowed” by Vikings from Norway in early
A.D. The inheritance of that invasion is still there,
to the observant eye and ear.

I lived not far from a charming creek called
Beckinsdale (in Modern Norwegian, Bekk i dal,
meaning “stream in valley”). People still call their
children “bairns” in that part of the world (in
Modern Norwegian, “barn” means “child”).
There are many examples of such glossal cross-
pollination. In fact, the languages of Old English
and Old Norse were so alike that the Vikings and
their victims probably understood each other
quite easily, and today language scholars are often
at pains to determine from which of them certain
words came.

In dialect, I recall verb endings that sounded per-
fectly natural to me: “we’ve meeten, eaten, beaten,
moven, proven.” Surely, these are older forms of
verb endings than in the modern English “we’ve
met, beaten, moved, proved.” (The endings sound
somehow more Germanic, though I am just guess-
ing; I was reminded of them on playing Deep
Purple’s song “Space Truckin’,” where Ian Gillan
sings, “We’ve meeten all the groovy people . . .”)

It is odd that “eaten” alone has survived in the U.K. (as has, occasionally,
“proven”; “gotten,” however, which has survived in the U.S., is strictly for-
bidden in the U.K. and yet the derivatives “forgotten” and “begotten” are
standard.). Clearly, the rumors of English grammar have been greatly
exaggerated.

What of “betaken”? Why is this not a word? It clearly fits the grammatical
forms. One even says idiomatically “I am rather taken by that” (preferably
with a butler-like inflection) and, of course, there is a similar word “be-
trothed,” which is in the dictionary. In Modern Norwegian it is indeed a
word (“betatt”) and it means exactly “rather taken by,” so I hereby define
the word “betaken.” And who can stop me?

Indeed, language changes regularly and we are inventing new words all
the time, using recognizable patterns. It tends to move from complicated
constructions toward simple regular patterns. If you examine which verbs
are still irregular (or strong) in language, it is those verbs that are most
commonly used (e.g., “to be”). There is a simple reason for this: We only
remember the irregularities if we are using them all the time and they are
strong enough to resist change. In other cases we forget the “correct”
forms and (regularize|regularise) them according to some simple syntactic
pattern. Anyone who has seen the British TV show “Ali G” will know from
his parodical dialect that there are parts of the U.K. where even the verb
“to be” is losing to regularization: “I is, you is, he is . . . , innit.” (Prizes
will be awarded for guessing the last word’s origins.)

In fact we add and change word endings willy-nilly: In the U.S. my least
favorite word at the moment is “provisioning” (which I like to call “provi-
sionizationing”) although “de-plane” is way up there (and it surely means
picking passenger aircraft out of the fur of a cat). These are particularly
nasty examples of “verbing” and “nouning,” especially American phenome-
nonizationings. In the U.K., people have an odd habit of saying “orientat-
ed” instead of “oriented,” fearing possibly that the latter has something to
do with a cultural revolution of cheap shoes, or harks of a country they
never managed to “civilise.” Or, perhaps they are simply so orientitillated
that they feel they must.

At any rate, although there are definite patterns to be seen, clearly human
language is driven by populism and natural selection, not by total logic or
design.

The Chomsky Hierarchy

So much for human language. It seems to have very little to do with struc-
ture or reliability—qualities we are certainly looking for in system adminis-
tration. So let’s get formal.

In the passages in the previous section, I broke several rules of writing
[although ;login:’s copyeditor may have unwittingly “corrected” some of
the more egregious abuses—copy ed.] and made you (the reader) work
harder than is generally allowed in modern literature. I served a plethora
of parenthetical remarks and digressions. I am guessing that you have
noticed these (and that you had no trouble in parsing them) but that they
were a little annoying, since you had to work slightly harder to understand
what I have written. Of course, I was making a point.

The theory of discrete patterns, such as houses of cards or flowerbeds, is
the theory of languages, as initiated by researchers including Noam
Chomsky in the late 1950s and 1960s. For discrete patterns, with symbolic

; LO G I N : O C TO B E R 2 0 0 6 CO N F I G U R ATI O N M A N AG E M E NT: M O D E LS A N D MY TH S, PA RT 2 19

content, it makes intuitive sense that discrete words and their patterns
might be a good method of description; but when we get to continuous
patterns, such as the curving of a landscape, what words describe the exact
shapes and infinite variations of form? For that we need a different lan-
guage: continuous (differential) mathematics, which we shall not have
time to mention in this episode.

The theory of formal languages assumes that a discrete pattern is formed
from an alphabet of symbols, shapes, colors, etc., much like a pack of
cards; patterns are then classified by measuring the complexity of the sim-
plest mechanism or computer program that could generate the pattern.
The classes of patterns are called formal grammars. Their classifications
and corresponding state-machines are as follows:

n Regular languages (finite automata, or finite state machines)
n Context-free languages (push-down automata)
n Context-sensitive languages (nondeterministic linear bounded

automata)
n Recursively enumerable languages (Turing machine)

The syntax of a language is a list of all legal sentences in the language.
Lists are not very helpful to us, though: We have trouble remembering
things by brute force, so we try to identify the repeated patterns and turn
them into rules. These pattern-rule templates are called grammars. The
simplest grammars are the regular grammars, and the patterns they repre-
sent can be modeled by a simple pattern-matching language: regular
expressions.

Regular Expressions

All UNIX users have met (or meeten) regular expressions. They are a well-
known and powerful way of matching text strings. The implementations
we know are stylized enhancements of the regular expressions of language
theory.

A language is said to be regular if it can be constructed from some alphabet
of symbols and satisfies a few basic rules. Let us suppose that we have an
alphabet, A, which contains a finite number of symbols. Those symbols
could be alphabetic, alphanumeric, numeric, glyphs, flowers (as in part 1),
or any arbitrary collection of denumerable symbols. The rules are these:

n The empty string and each symbol in the alphabet are regular expres-
sions.

n If E1 and E2 are regular expressions, then so is E1E2, i.e., the concate-
nation of the two (e.g., expressions “b,” “e,” “be,” “taken,” and
“betaken”).

n If E1 and E2 are regular expressions, then so is the union of the two
(i.e., we allow alternate expressions to be combined in no particular
order). This is written with the vertical bar “|” in most implementa-
tions (e.g., we have (met|meeten)).

n If E is a regular expression then so is E* (repeated instances). Hence
we have acceptable expressions “provision,” “ization,” and “ing” gen-
erating “provisionizationingizationingingingization,” etc. ad lib.

n Nothing else is a regular expression.

The Kleene star (*) is a shorthand for the concatenation zero or more
instances of members of a set or expression. This is the parsimonious form
of regular expressions. We’ll not delve into implementations for now.

20 ; L O G I N : V O L . 3 1 , N O . 5

Languages in Configurations

There has been a lot of talk about “configuration languages” as tools for
sorting out UNIX systems: cfengine, LCFG, now Puppet, etc. Rumor has it,
I wrote one of these myself. But don’t let this talk of language trick you
back into thinking about these tools. Rather, notice that the very problem
of configuration itself involves language—because it is about describable
patterns. For example, UNIX file permissions form the simplest kind of
regular language. If we take the octal representation, they consist of scalar
states of constant length and a fixed alphabet consisting of the following
“symbols”:

Q = {0,1,2,3,4,5,6,7}

It is easy to represent this as a language. It is simply the union of each of
the symbols. That is, if we ignore the foibles of UNIX syntax, then the
entire language is simply written

000|001|002|003|004|...|776|777

This is all very well, but so what?

The significance of regular expressions for configuration policy is that
there is a provable equivalence between regular languages and finite state
machines, i.e., the simplest kind of algorithms, using a fixed amount of
memory. This means that regular strings are relatively easy to parse, identi-
fy, and understand. This, at least partly, accounts for their ubiquity in com-
puter software where pattern matching is required.

Regular expressions occur in editors, where searching and replacing is
required, in intrusion-detection and spam-detection software, in all kinds
of policy languages, and on the UNIX command shell (as “globbing”).
They are a central part of Perl, a language designed for pattern extraction
(though Perl is not a regular language). Today, no computer toolbox is
complete without a regular expression library.

Bring on the Toil (Parentheses Again)

In spite of the multifarious uses for regular expressions, they are only the
lowest level of sophistication in the Chomsky hierarchy. The computer lan-
guages we are most familiar with for programming or markup are almost
all context-free languages. Such languages can only be approximated with
finite memory. They contain nested parenthetic structures that require an
extensible stack to process. Here, for instance, are some examples of lan-
guages that use parentheses to identify information by type:

1. <account>
<uname>User1</uname>
<passwd>x7hsk.djt</passwd>
<uid> 100 </uid> ... </account>

2. (account (uname User1) (passwd x7hsk.djt) ...)

If the level of parenthetic nesting in a grammar is not large, we can simu-
late common cases of context-free languages by treating fragments as regu-
lar expressions with balanced pairs of symbols (as anyone who has written
a simple parser will know). This is useful because it means that a simple
finite state machine can make a good attempt at interpreting the string and
this is cheap.

However, to ensure full generality one must go beyond regular language
tools and enter the realm of stack-based tools such as Yacc and Bison for

; LO G I N : O C TO B E R 2 0 0 6 CO N F I G U R ATI O N M A N AG E M E NT: M O D E LS A N D MY TH S, PA RT 2 21

context-free grammars. Each level of the Chomsky hierarchy grows in its
computational complexity (costing us more to parse parenthetic remarks
(as you (no doubt) experienced in my introduction)). The most general
patterns require a full Turing machine (a computer with infinite memory)
to solve.

The trouble with this next level of computation is that it is a drastic step.
It requires a whole new level of sophistication and toil in modeling,
describing, and understanding to master. We want to use higher-grammati-
cal patterns to design, classify, and maintain structures that are context
free. Worse yet, the structures might be inside files, in packet streams,
distributed around a network, or inside a database. The difficulty of going
beyond finite state automata partly explains why pattern-recognition sys-
tems (such as network intrusion detection systems), which obviously need
to deal with parentheses (e.g., TCP-SYN, TCP_FIN), generally do not
record such state, but rather rely on regular expression rules applied as
fragments. This is “doable,” if not optimal.

Data Types and Bases

In configuration management we meet information in a variety of forms.
Lists of values are common. Line-based configuration files are ubiquitous
in UNIX. Windows has a simple key database in its registry. What kinds of
languages do these data form?

n Scalar permissions are regular languages.
n Lists of regular objects are also regular.
n A line-based text file is a list and hence is regular.
n Text files containing higher grammars such as XML are context free.

Relational databases have been used to store data almost since computing
began. They add a new twist to the idea of languages, namely that the
words one forms from the basic alphabet of a language (and sometimes
even the symbols of the alphabet) can be classified into types. Consider
Figure 1.

F I G U R E 1 : S O M E T A B L E S I N A R E L A T I O N A L D A T A B A S E

The figure shows the basic idea of a relational database. Certain types of
data are grouped together in tables or records. Such data structures have
eventually ended up in programming languages too, in the form of records,
structs, and now even object-oriented “classes.” The main point of putting
information into a predictable structure is that one imposes a linguistic
discipline on the data. The tables are simple parentheses around a number
of regular language items that are given names. In the first table we have a
string (which is a regular object) with a name “base path,” a “regex,”

22 ; L O G I N : V O L . 3 1 , N O . 5

which is a new kind of table or parenthetic grouping, and an age, which is
yet another parenthetic grouping. The “regex” has two regular members: a
regular expression (which is a string and is hence also a regular object)
and a label (string or number), which is regular. Similarly, “Age” consists
of a list of three regular objects.

A relational database is therefore a context-free language. SQL is a query
language that uses regular expressions embedded in a table model to locate
data in the database (which has its own context-free language pattern). We
cannot escape from languages or these basic pattern ideas in configuration
management. They recur at all levels.

Data types are a powerful idea. They allow us to distinguish among seem-
ingly equivalent patterns of data and therefore open up a range of flavors
or colors to the flowers in our garden. This is the purpose of having tables
in relational databases: We can group together objects into comparable
clusters. Syntactically, all objects of the same type have the same basic
structure and are therefore comparable, i.e., they form the same subpattern.

Markup

The trouble with databases is that they are not very transparent—they can
only be read with special tools, so it is hard to see the structures in data in
an intuitive way. This is less of a problem in computer programming lan-
guages where class hierarchies are written down in ASCII form. For many,
the answer to this problem has been to adopt XML, a generic markup rep-
resentation for a context-free data structure, which adopts the best of both
worlds. Not only does XML offer a standardized encoding of a context-free
structure, it claims to make it parsable by humans as well as machines.
(Let us say that the rumors of its human-readability have been greatly
exaggerated.)

Every pair of tags in a markup language such as HTML or XML makes a
data type out of the parenthesized region. For example:

The <adj>quick</adj> brown <noun>fox</noun> <verb>jumps</verb>
over the lazy dog.

The current adoration of XML has no real significance as far as problem-
solving goes, but it is interesting that the trend in system design is to move
away from regular line-based data, as is traditional in UNIX and DOS,
toward context-free data. This opens the door to much greater complexity,
with attendant consequences that we shall consider as the series progresses.

Revolution or Regex?

Toil, work, and difficulty relate to grammars or patterns rather than to
symbols. Noah Webster, as a slap in the face to the British, rewrote the
spelling of the American English as a political act after the revolution. (No
doubt my own spellings “colour,” “flavour,” etc., have been magically
transformed into American “color” and “flavor” by the copy editor.
[Indeed—copy ed.]) The adaptation has almost no consequence (except to
annoy self-righteous Brits immensely); many readers hardly even notice
this change. Had Webster altered the grammar of the language, there
would have been serious trouble. But the fact is that, although he obscured
some of its etymology, the basic patterns of the language did not change,
and therefore even the most obtuse of colonialists can still read American
(although Canadians seem totally confused about how they are supposed
to spell).

; LO G I N : O C TO B E R 2 0 0 6 CO N F I G U R ATI O N M A N AG E M E NT: M O D E LS A N D MY TH S, PA RT 2 23

The patterns that we are able to discuss and represent are key to mastering
the problem of configuration management. Many system administration
and management tools try to force users into doing either what the tools
can do or what is considered manageable. By asking users to limit the com-
plexity of their configurations they plump for a reasonable strategy that
strives for predictability. This might be all right in practice, for the time
being, but if we are going to fully understand the problem, we must go
beyond quick fixes. The challenge for any theory of configuration lies in
describing what people really do, not in trying to force people to do some-
thing that is easy to understand.

In the next part of this series, I would like to run through some of the data
models that have been applied to the problem of system management. We
shall ask the following: How can we measure their complexity, and why are
none of them ever really used?

24 ; L O G I N : V O L . 3 1 , N O . 5

5th USENIX Conference on File
and Storage Technologies

February 13–16, 2007 San Jose, CA

Save the Date!

Sponsored by USENIX in cooperation with ACM SIGOPS,

IEEE Mass Storage Systems Technical Committee (MSSTC), and IEEE TCOS

www.usenix.org/fast07

Join us in San Jose, CA, February 13–16, 2007, for the latest in file and storage technologies. The 5th USENIX

Conference on File and Storage Technologies (FAST ’07) brings together storage system researchers and

practitioners to explore new directions in the design, implementation, evaluation, and deployment of storage

systems. Meet with premier storage system researchers and practitioners for 2.5 days of ground-breaking file

and storage information!

