32

RICHARD MCDOUGALL AND
JAMES LAUDON

Richard McDougall is a Distinguished Engineer at
Sun Microsystems, specializing in operating systems
technology and systems performance.

richard.mcdougall@sun.com

James Laudon is a Distinguished Engineer and a
Niagara processor line architect at Sun Microsys-
tems. His specialties are hardware multi-threading,
multi-processing, and performance modeling.

james.laudon@sun.com

CMP Implementation Options

A) Conventional B) Simple Chip Mu Riproces sor
CPUCore CPUCore CPUCore
[Regsters | Registers | [Regsters |

C)SharedCacheChip
Multiprocessor

CPUCore CPUCore
I Regsters l I Reg sters I FEGE [REGE FEGE [REGE
Er] Gl [5] Er B[54
[L2 Cache | [L2 Cache |
1 I
Go> G5

THE ADVENT OF SYMMETRIC MULTI-
Processing (SMP) added a new degree of
scalability to computer systems. Rather
than deriving additional performance from
an incrementally faster microprocessor, an
SMP system leverages multiple processors
to obtain large gains in total system per-
formance. Parallelism in software allows
multiple jobs to execute concurrently on
the system, increasing system throughput
accordingly. Given sufficient software paral-
lelism, these systems have proved to scale
to several hundred processors.

More recently, a similar phenomenon is occurring
at the chip level. Rather than pursue diminishing
returns by increasing individual processor per-
formance, manufacturers are producing chips with
multiple processor cores on a single die. For
example, the AMD Opteron and UltraSPARC IV
now provide two entire processor cores per die,
providing almost double the performance of a sin-
gle-core chip. The Sun UltraSPARC T1 (Niagara)
processor packs eight cores onto a single die and
can provide up to eight times the performance of
the dual-core UltraSPARC processors.

There are three main types of multi-core
processors:

Simple multi-core processors have two com-
plete processors placed on the same die or
package (e.g., the dual-core AMD Opteron
processor).

Shared-cache multi-core processors consist of
two complete cores, sharing some levels of
cache, typically Level 2 (L2) or Level 3 (L3)
(e.g., the Sun UltraSPARC IV+ and Intel
Woodcrest processors, which share caches
between two cores).

Multi-threaded multi-core processors have
multiple cores, with multiple threads within
each core (e.g., the Sun UltraSPARC T1).

As processor frequency increases, the amount of
time spent waiting for memory stalls increases.
This means that placing multiple cores on a die
can increase performance, but ultimately multi-
threading in the CPU is critical to overcoming
memory latency stalls. Implementations that use
multi-cores plus hardware threading have recently
proven to give superior performance at much
lower power consumption.

These new multi-core processors are bringing
what was once a large multiprocessor system

down to the chip level, providing a significant level of throughput in a
small package, with extremely low power consumption. In the case of the
Sun UltraSPARC T1 processor with eight cores and four threads per core,
power consumption of the chip is less than 70 watts. We have effectively
reduced the equivalent throughput of a refrigerator-sized server (such as
the Sun E6000 30-way, circa 2000) into a 1U single-processor machine,
using less than 180 watts.

In this article, we’ll contrast the different types of multi-core approaches
and look at the performance advantages and tradeoffs. We will also discuss
the potential implications for systems and application software.

Multi-Core Processors

The latest dual-core AMD Opteron is an example of a multi-core design.

CPU1 The chip has two complete processor cores, sharing a bus to memory. As
shown in the left of Figure 2, it is almost identical to its single-core prede-
L;(’;’Lihe cessor; the second core is a complete duplication of the first, including its
pipeline and caches. From a performance perspective, the chip behaves

much like a dual-processor SMP machine, albeit with some potential con-
tention for memory bandwidth through the shared path to memory. From
a software perspective, the chip appears almost indistinguishable from a
dual-processor system. Software threads are scheduled onto the processor
cores by the operating system—at least two threads are required to keep
both cores busy.

Multi-Threading

Processor designers have found that since most microprocessors spend a
significant amount of time idly waiting for memory, software parallelism
can be leveraged to hide memory latency. Since memory stalls typically
take on the order of 100 processor cycles, a processor pipeline is idle for a
significant amount of time. Table 1 shows the amount of time spent wait-
ing for memory in some typical applications, on 2 GHz processors. For
example, we can see that for a workload such as a Web server, there are
sufficient memory stalls such that the average number of machine cycles is
1.5—2.5 per instruction, resulting in the pipeline waiting for memory up
to 50% of the time.

Waiting Typical Number of Percent of Time
Application Cycles per Instruction for Memory Stalls
Transaction database 3-6 >75%
Web server 1.5-2.5 ~50%
Decision support database 1-1.5 ~10-50%

In Figure 3, we can see that less than 50% of the processor’s pipeline is
actually being used to process instructions; the remainder is spent wait-
ing for memory. By providing additional sets of registers per processor
pipeline, multiple software jobs can be multiplexed onto the pipeline, a
technique known as simultaneous multi-threading (SMT). Threads are
switched on to the pipeline when another blocks or waits on memory, thus
allowing the pipeline to be utilized potentially to its maximum. Figure 4
shows an example with four threads per core. In each core, when a memo-

33

34

ry stall occurs, the pipeline switches to another thread, making good use of
the pipeline while the previous memory stall is fulfilled. The tradeoff is
latency for bandwidth; with enough threads, we can completely hide mem-
ory latency, provided there is enough memory bandwidth for the added
requests. Successful SMT systems typically allow for very high memory
bandwidth from DRAM, as part of their balanced architecture.

Software Thread Compute Cycles —

A
to
Memory Wait Cycles
—
) -~
tc — compute time t

t - memory access ime

e —»t [MG M NG M]

Y

Time

Parallel C ~+—— Compute Cycles
Thread Execution Memory Wait Cycles

Cl M [C] M [€] M |

ICore 4 € M C] M €] M]|
€ M [€] M C| M |
E MI[El M I[E M |
[M [C] M [C M]
ICore 3 C MIE M€l M]

[€ M €] M IC])
€ M [C] M [C] M

€ M J€ M [€] M |

(Core 2 € M €] M [C] M |
€ M€ M€l M »

EMIE MICTM |

=

Processor

[!(!I[d
| M €] M _[C] M
III

Time

(Core 1

SMT has a high return on performance in relation to additional transistor
count. For example, a 50% performance gain may be realized by adding
just 10% more transistors with an SMT approach, in contrast to making
the pipeline more complex, which typically affords a 10% performance
gain for a 100% increase in transistors. Also, implementing multi-core
alone doesn't yield optimal performance—the best design is typically a bal-
ance of multi-core and SMT.

Contrasting the Different Types of Threading

There are three main ways to multi-thread a processor: coarse-grain, verti-
cal, and simultaneous [1].

With coarse-grain threading, a single thread occupies the full resources of
the processor until a long-latency event such as a primary cache miss is

encountered, as shown in Figure 3. At that point, the pipeline is flushed
and another thread starts executing, using the full pipeline resources.
When that new thread hits a long-latency event, it will yield the processor
to either another thread (if more than two are implemented in hardware)
or the first thread (assuming its long-latency event has been satisfied).
Coarse-grain threading has the advantage that it is less of an integral part
of the processor pipeline than either vertical or simultaneous multi-thread-
ing and can more easily be added to existing pipelines. However, coarse-
grain threading has a big disadvantage: the high cost of switching between
threads. When a long-latency event such as a cache miss is encountered,
all the instructions in the pipeline behind the cache miss must be flushed
from the pipeline and execution of the new thread starts filling the pipe-
line. Given the pipeline depth of modern processors—as many as 16 in-
structions in Intel-styled processors—this means a thread switch cost in
the tens of processor cycles. This high switch cost means that coarse-grain
threading cannot be used to hide the effects of short pipeline stalls owing
to dependencies between instructions and even means that the thread-
switching latency will occupy much of the latency of a primary cache
miss/secondary cache hit. As a result, coarse-grain multi-threading has
been primarily used when existing, single-threaded processor designs are
extended to include multi-threading.

The two remaining techniques for threading, vertical threading (VT) and
SMT, switch threads on a much finer granularity (and not surprisingly are
referred to as fine-grained multi-threading). On a processor capable of
multiple instruction issue, an SMT processor can issue instructions from
multiple threads during the same cycle, whereas a VT processor limits
itself to issuing instructions from only one thread each cycle (see Figure
4). On a single-issue processor there is no difference between VT and SMT,
as only one instruction can be issued per cycle, but since there is no issue
of instructions from different threads in the same cycle, single-issue, fine-
grained multi-threaded processors are labeled VT.

Both SMT and VT solve the thread switch latency problem by making the
thread switch decision part of the pipeline. The threading decision is fold-
ed in with the instruction issue logic. Since the issue logic is simply trying
to fill the pipeline with instructions from all of the hardware threads, there
is no penalty associated with switching between threads. However, a little
extra complexity gets added to the issue logic, as it now needs to pick
instructions from multiple ready threads. This additional issue logic com-
plexity is fairly small (certainly much smaller than all the other issue-relat-
ed complexity that is present in a modern superscalar processor) and well
worth it in terms of performance. The advantages of SMT and VT are that
very short pipeline latencies (all the way down to a single cycle) can be
tolerated by executing instructions from other threads between the instruc-
tions with the pipeline dependency.

The ability to switch threads at no cost is the key to enabling the impres-
sive performance of the new processors.

Chip-Level Multi-Threading

A new generation of processors that use Chip-Level Multi-Threading
(CMT) combine multi-core with SMT, thereby providing a large core count
and the ability to extract the maximum performance from each core. The
UltraSPARC T1 is an example of a CMT processor design.

35

36

ULTRASPARC T1

Most people are familiar with the hyperthreaded Intel processors, which
employ SMT. They support two threads in hardware and show modest
gains on some parallel workloads. Given that SMT is the most aggressive
of the three threading schemes, one would expect SMT to deliver the high-
est performance, but in general the performance gains seen from hyper-
threading are small (and sometimes hyperthreading actually leads to per-
formance losses). However, the gains seen from hyperthreading are not
limited by the SMT but more by the memory system, and unfortunately
the Intel hyperthreading implementation delivers a misleading message
about the performance to be gained from fine-grained multi-threading.

The UltraSPARC T1, in contrast, was built from the ground up as a multi-
threaded chip multiprocessor, and each of the eight pipelines employs ver-
tical threading of four hardware threads. The eight pipelines in the
UltraSPARC T1 are short (six stages), and one might be tempted to employ
the slightly simpler coarse-grain threading. However, even on the
UltraSPARC T1, the gains from vertical threading over coarse-grained
multi-threading ended up being substantial. In fact, the very earliest pro-
posals for what became the UltraSPARC T1 employed coarse-grain thread-
ing. Rather quickly, the modest additional complexity of vertical threading
was traded off against its performance gains and the switch to vertical
threading was made. The performance and performance/watt numbers
from the UltraSPARC T1 show that it’s been worth it!

The UltraSPARC T1 processor uses eight cores on a single die. Each core
has four threads sharing a pipeline, an L1 instruction cache, a data cache,
and a memory management unit (MMU).

The UltraSPARC T1 architecture has the following characteristics:

Eight cores, or individual execution pipelines, per chip.

Four hardware threads (strands) or active thread contexts that share a
pipeline in each core. Each cycle of a different hardware strand is
scheduled on the pipeline in round-robin order.

A total of 32 threads per UltraSPARC T1 processor.

A strand that stalls for any reason is switched out and its slot on the
pipeline is given to the next strand automatically. The stalled strand is
inserted back in the queue when the stall is complete.

Cores that are connected by a high-speed, low-latency crossbar in sili-
con. An UltraSPARC T1 processor can be considered SMP on a chip.
Hardware strands that are presented by the operating system as a
processor. For example, Solaris and Linux see each thread as a separate
processor.

Cores that have an instruction cache, a data cache, an instruction
translation-lookaside buffer (iTLB), and a data TLB (dTLB) shared by
the four strands.

Strands defined by a set of unique registers and logic to control state.
A 12-way associative unified L2 on-chip cache. Each hardware strand
shares the entire L2 cache. Historically, the level of associativity we
typically see is around 4 for a non-CMT core, but with 32 strands shar-
ing the L2, larger associativity is critical.

Low-latency Double Data Rate 2 (DDR2) memory to reduce stalls.
Four on-chip memory controllers provide high memory bandwidth
(with a theoretical maximum of 25 gigabytes per second).

An operating system scheduler that schedules TWPs on UltraSPARC
T1 hardware strands. It is the task of the hardware to schedule strands
in the core.

* From sun.com: “Sun Fire T1000 (8 cores,
1 chip) compared to Dell PowerEdge 2850
(4 cores, 2 chips). Results from www.spec
.org as of May 30th 2006. Dell power meas-
urements taken from the Dell Power
Calculator, 03/06/06, posted: http:/wwwl
.us.dell.com/content/topics/topic.aspx/
global/products/pedge/topics/en/config
_calculator?c=us&cs=555&1=en&s=biz.
System configured with 2 x Dual Core
2.8GHz processors, 16GB RAM, 2 x USCSI
disks. Sun Fire T1000 server power con-
sumption taken from measurements made
during the benchmark run.”

A modular arithmetic unit (MAU) for each core that supports modular
multiplication and exponentiation to help accelerate Secure Sockets
Layer (SSL) processing.

The layout of a system implemented with the UltraSPARC T1 processor is
shown in Figure 5 (which, for clarity, does not show the four memory con-
trollers between the L2 cache and the four banks of SDRAM).

DDR-2 SDRAM DDR-2 SDRAM DDR-2 SDRAM DDR-2 SDRAM

A

L2 cache | L2 cache | L2 cache | L2cache |

On-chip cross-bar interconnect FPU

Core | Core |Core |Core |Core | Core | Core |Core
0 1 2 3 4 5 6 7

System Interface
Buffer Switch Core

I UltraSPARC T1 Processor

Bus

The Power Advantages of CMT

More complex pipelines use a significantly larger amount of power for lit-
tle gain in performance. For example, when the clock rate of the Intel
Celeron went from 1.2 GHz to the Pentium 4 at 2.2 GHz, power increased
from 29 to 55 watts, but there was only a 20% performance improvement
(measured using the Business Winstone Benchmark 2001).

Keeping the pipeline simple significantly reduces power consumption. In
aggressive CMT architectures, such as the UltraSPARC T1, power per core
is as low as 8 watts. This is achieved by keeping the pipeline simple, for
example using a single-issue pipeline and eliminating many of the
nonessential pipeline features, such as memory prefetching.

As an example, we can look at the throughput and power consumption of
a typical Web workload, represented by the SPECweb2005 benchmark (see
Table 2). By measuring the ratio of performance against watts consumed,
we can contrast the performance/power efficiency of the system.

UltraSPARC T1 2x Dual Core @ 2.8 GHz
Space (rack units) 1 2
Watts (system) 188 450
Performance 10,466 4850
Performance per watt 55.7 10.8

In this example, the CMT design provides roughly twice the throughput of
the nonthreaded system, at half the power [2].

The Software View of CMT

A very simplistic view of a CMT system is that its software performance is
much like that of an SMP system with the number of processors equal to

37

the number of strands in the chip, each with slightly reduced processing
capability. Software threads are scheduled by the operating system onto
individual hardware threads, and strands are scheduled onto the pipeline
by a hardware scheduler. The number of software threads required to keep
the core busy varies from one to many, depending on the ratio of memory
stalls to compute events.

SINGLE-THREAD PERFORMANCE

Since each hardware thread is sharing the resources of a single processor
core, each thread has some fraction of the core’s overall performance. Thus,
an eight-core chip with thirty-two hardware threads running at 1 GHz may
be somewhat crudely approximated as an SMP system with thirty-two 250
MHz processors. Applications which are single-threaded will see lower per-
formance than that of a processor with a more complex pipeline. The
reduction in performance for single-threaded applications will depend on
whether the application is more memory- or compute-bound, with com-
pute-bound applications showing the largest difference in performance.

CMT LOVES “THROUGHPUT WORKLOADS”

To achieve per-thread performance with a significant increase of through-
put and a reduction in power requires concurrency in the software. Appli-
cations that are server-oriented typically have bountiful amounts of con-
currency. Typically these types of throughput applications are driven by a
large number of connections or users, meaning there is enough natural
concurrency to exploit SMP or CMT systems.

For a throughput-oriented workload with many concurrent requests (such
as a Web server), the marginal increase in response time is virtually negli-
gible, but the increase in system throughput is an order of magnitude over
a non-CMT processor of the same clock speed.

A number of classes of applications benefit directly from the ability to scale
throughput with CMT processors:

Multi-threaded native applications: Multi-threaded applications are
characterized by having a small number of highly threaded processes.
Examples of threaded applications include Lotus Domino or Siebel
CRM.

Multi-process applications: Multi-process applications are character-
ized by the presence of many single-threaded processes. Examples of
multi-process applications include the Oracle database, SAP, and Peo-
pleSoft.

Java applications: Java applications embrace threading in a funda-
mental way. Not only does the Java language greatly facilitate multi-
threaded applications, but the Java Virtual Machine is a multi-threaded
process that provides scheduling and memory management for Java
applications. Java applications that can benefit directly from CMT
resources include application servers such as Sun’s Java Application
Server, BEAs Weblogic, IBM’s Websphere, and the open-source Tomcat
application server. All applications that use a Java 2 Platform, Enter-
prise Edition (J2EE platform) application server can immediately ben-
efit from CMT technology.

Multi-instance applications: Even if an individual application does not
scale to take advantage of a large number of threads, it is still possible
to gain from CMT architecture by running multiple instances of the
application in parallel. If multiple application instances require some

degree of isolation, virtualization technology (for the hardware of the
operating system) can be used to provide each of them with its own
separate and secure environment.

We've spent a great deal of time evaluating server application performance
of CMT architectures; my blog [3] contains a good starting summary of the
results we’ve had.

THOUGHTS ABOUT SOFTWARE SCALING

On a multi-threaded microprocessor, each hardware thread appears to the
operating system as an individual processor. The ability of system and
application software to exploit multiple processors or threads simultane-
ously is becoming more important than ever. As CMT hardware progresses,
software is required to scale accordingly to fully exploit the parallelism of
the chip.

Thus, bringing this degree of parallelism down to the chip level represents
a significant change to the way we think about scaling. Since the cost of a
CMT system is close to that of recent low-end uniprocessor systems, it’s
inevitable that even the cheapest desktops and servers will be highly
threaded. Techniques used to scale application and system software on
large enterprise-level SMP systems will now frequently be leveraged to pro-
vide scalability even for single-chip systems. We need to consider the
effects of the change in the degree of scaling at the low end on the way we
design applications, on which operating system we choose, and on the
techniques we use to deploy applications.

Conclusion

In today’s data centers, power and space are valuable resources. The advan-
tages brought about by CMT are inevitable for optimizing these resources.
The aggressiveness of CMT varies with different system designs; we expect
to see four-core systems from AMD in the near future, UltraSPARC follow-
ons are expected to increase the thread count, and Intel is discussing some
radical multi-core designs. The interesting debate will be about the number
of cores to have and to what degree each approach will utilize vertical
threading within each core to hide memory latency. It’s going to be a fun
time in this space. Stay tuned!

ACKNOWLEDGMENTS

Thanks are owed to Denis Sheahan, Performance Specialist in the
UltraSPARC T1 group for the UltraSPARC T1 specifications, and the PAE
performance group at Sun Microsystems for providing the performance
characterization data of workloads on CMT.

REFERENCES

[1] Jim Laudon’s blog: http://blogs.sun.com/jlaudon.

[2] T1000 Server Benchmarks:
http://www.sun.com/servers/coolthreads/t1000/benchmarks.jsp.

[3] Richard’s Blog: http://blogs.sun.com/rmec.

