40

TIMO SIVONEN

measuring perfor-

mance of FreeBSD
disk encryption

Timo Sivonen is a Senior Consultant at International
Network Services (INS). He lives in the U.K. with his
wife and son.

timo.sivonen@ins.com

;LOGIN: VOL. 31, NO. 5

DISK ENCRYPTION IS ONE OF THOSE
services absolutely invaluable to laptop
owners and possibly even suspicious if
used by others. Yet, as with many other
security services, you have to ask yourself
what is the threat you are trying to protect
against or the problem you are trying to
solve.

Low-level disk encryption, which encrypts every-
thing on the raw partition including the file sys-
tem, does keep your files secure if the passphrase
to open the partition is not known. Yet, if the
encryption layer lies below the file system, almost
the only way to create an encrypted backup of an
encrypted file system is to copy the partition to an
image file with dd(1), which is both cumbersome
and inefficient.

In my day job I have to store confidential client
data on my laptop and I have to back the laptop
up regularly. However, data encrypted on the
hard disk must remain encrypted on backups.
Furthermore, I prefer multiple 650 MB encrypted
file systems to one 4 GB volume, since I can back
the smaller volumes up on individual CDs as
opposed to using more cumbersome tapes. Like
everyone else, I also use a flash drive, but instead
of carrying around several flash drives for differ-
ent operating systems, I wanted to consolidate my
flash drives to one and copy files between UNIX
boxes using an encrypted file system without los-
ing UNIX/Windows interoperability offered by
FAT32.

Since version 5, FreeBSD has featured GEOM-
Based Disk Encryption (GBDE). In brief, GBDE

is a software-only disk-encryption service that
uses AES-128 to encrypt the contents of the desig-
nated raw device and the master encryption key

is stored under AES-256. GBDE seemed to offer
exactly what I was looking for except for the fact
that all documentation pointed toward encrypting
raw partitions. However, FreeBSD also has a facili-
ty called md(4), or memory disk, which, among
other things, allows you to read and write image
files as raw devices. Combined with newfs, one

is able to write a file system on the image and
mount it like any other disk device. All that is
required is to set up the GBDE layer on top of md,
write a file system on the GBDE device, and
mount the device.

Setting It Up

The initialization of a new encrypted memory disk is a relatively straight-
forward operation, although a few caveats do exist. (Allocate the image
file, create the memory disk, label the device, initialize the encrypted de-
vice, attach the encrypted device, create the file system on the encrypted
device, and mount it.) The most critical advice is to not enable UFS soft
updates, as these may cause devfs to lock the (GBDE-encrypted) file sys-
tem. In other words, a locked file system is permanently busy and can'’t be
unmounted even in system shutdown, which ultimately may corrupt the
file system. This may not happen if running FreeBSD normally, on bare
metal hardware, but it is certainly possible under VMware. Later in this
text we will discover that not using soft updates has little impact on file
system performance.

A GBDE-encrypted file system is created on a memory disk in seven steps:

1. # dd if=/dev/random of=/home/user/gbdeimg bs=1m count=650
2. # mdconfig -a —t vnode —f /home/user/gbdeimg
md1
bsdlabel —-w md1 auto
4. # gbde init /dev/mdic -L /etc/gbde/gbdeimg.key
Enter new passphrase:
Reenter new passphrase:
5. # gbde attach /dev/md1c —I /etc/gbde/gbdeimg.key
Enter passphrase:
6. # newfs /dev/md1c.bde
7. # mount /dev/md1c.bde /mnt

w

The explanation of each step is as follows:

1. Allocate the disk space by writing 650 MB of random data from
/dev/random to the designated image file.

2. Create the memory disk, through which the disk image will be
accessed. Note that mdconfig(8) will print out the assigned md
device, unless explicitly told which device to use.

3. Label the newly created memory disk to enable creation of the
encryption layer and the file system at a later stage.

4. Initialize the encryption layer. Since the encryption key is specified
separately from the disk image, those really concerned about their
laptop security can save the encryption key(s) on a separate flash
drive, which must be attached and mounted in order to prepare and
mount encrypted partitions.

5. Once the encrypted device has been initialized, it has to be attached
in order to write the file system on the encrypted device. This opera-
tion will also create a new instance of the disk device with the .bde
suffix to denote GBDE encryption. Hence, all file system operations
must be made with the .bde device.

6. Write the file system on the encrypting device (i.e., md1c.bde in the
example that follows). Remember to not enable soft updates, since
devfs may become upset by this. Furthermore, it was discovered that
there may not be any significant performance improvement over UFS
file systems that do not use soft updates.

7. Once a file system has been created, the encrypting device can be
mounted normally. All updates to the file system are written to the
image file, which can be backed up using tar or cpio or burned on a
CD when unmounted and taken off-line.

41

One unhappy discovery in this journey was that an encrypted file system
cannot be attached from read-only media. You can create a memory disk
from a read-only image, and you can mount UFS file systems read-only, but
you cannot attach an encrypted file system if its disk image resides on, for
example, a CD-ROM. This discovery was a slight setback but not critical:
After all, PGP disks formatted with NTFS must be copied from the backup
media to a disk first, since NTFS cannot be mounted read-only either.

Choices and Performance

FreeBSD 6 introduced a new encrypted file system, GELI (GEOM_ELI
cryptographic GEOM class). Unlike GBDE, which is a software-only facili-
ty, GELI utilizes the crypto(4) framework and is able to use encryption
hardware if available.

GELI also gives more choice in algorithm selection and key length.
Whereas GBDE only uses AES-128 for encrypting the disk contents, the
users of GELI can choose from 3DES, AES, and Blowfish with key lengths
of 128 or 256 bits. 3DES has a fixed key length of 192 bits. With this kind
of selection it may seem difficult to choose the right encryption algorithm
and balance security with performance.

To answer these questions and to be able to make educated decisions on
which disk encryption to use, or which algorithm and how long a key to
select, I devised a test plan to give some insight into the performance of
FreeBSD disk encryption. Understanding that the results would be affected
by the type of hardware available, even when executing tests on an other-
wise idle system, one has to accept a certain distribution in results since,
after all, UNIX is a time-sharing operating system and does not guarantee
any throughput time for a command or a system call. My plan was to
measure processing times for write and read operations when writing and
reading a single 100 MB file or writing and reading 100 1-MB files. The
files would only contain random binary data as read from /dev/random.
Hence, the following tests were conceived:

Writing and reading a 100 MB file and 100 1-MB files using GBDE and
GELI on a memory disk.

Writing a 100 MB file and 100 1-MB files using GBDE and GELI/AES-
128 on a raw disk partition. The purpose of this test was to establish
the baseline on what type of throughput one may expect from encrypt-
ing file systems. Without the md layer in the way, one would expect a
visible improvement in performance.

Writing a 100 MB file and 100 1-MB files using GELI on a memory
disk, with a variety of ciphers. The purpose of this test was to compare
the performance of GELI when a cipher other than the default AES-
128 is used.

Each write and read test was repeated three times and an average was cal-
culated to get an approximate time of how long it would take to process an
operation. Since the absolute processing times depend on the underlying
hardware, one should not measure absolute seconds but, instead, compare
approximate processing times among different disk-encryption methods.

The Results

The test system was an IBM ThinkPad T21 laptop with an 850 MHz clock.
The boot disk was a 40 GB Fujitsu MHV2040AH and the test disk was a 6
GB IBM DARA206000 running at 4,200 rpm. The tests were conducted in

multi-user mode by writing files from the boot disk to the test disk and
vice versa. There were no encrypted file systems active on the boot disk.
The tests were made using FreeBSD 6.1.

The most interesting test was to write a 100 MB file of random data and
100 files of 1 MB of random data to a directory. This test was conducted
for GBDE, GELI, and a plain UFS file system on a memory disk. The test
results are illustrated in Figure 1.

08:38.4

07:12.0

05:45.6

o with s/u
04:19.2
m without s/u

02:52.8

01:26.4

00:00.0

Write Write Write Write Write Write
1x100MB 100x1MB 1x100MB 100x1MB 1x100MB 100x1MB

GBDE GELI No Encryption

According to these results, GBDE does not perform very well at all when
writing on a memory disk. In comparison, write performance of GELI is

roughly equivalent to plain UFS on a memory disk. One should also note
that enabling or disabling soft updates makes practically no difference to

performance.

Since results on a memory disk showed a visible difference in performance
between GBDE and GELI, it was measured whether there is any difference
in performance for these two disk-encryption systems when writing on a
raw partition, without using a memory disk layer. The results can be found
in Figure 2.

00:43.2
00:38.9
00:34.6
00:30.2
00:25.9
00:21.6
00:17.3
00:13.0
00:08.6
00:04.3
00:00.0

@ with s/u
m without s/u

Write Write Write Write Write Write
1x100MB 100x1MB 1x100MB 100x1MB 1x100MB 100x1MB

GBDE GELI No Encryption

The results show that GBDE is still visibly slower than GELI but the differ-
ence between the two is no longer as dramatic. However, I am unable to
explain why GBDE performs so poorly with an md device, whereas the
performance difference with GELI on a raw partition is not that significant.

As one would expect, reading from a memory disk is much faster than
writing (Figure 3, next page). There is little difference between GBDE and
GELLI, although GBDE may be slightly slower than GELI or a plain memo-
ry disk. In fact, the results show that on a moderately fast processor the
time spent encrypting or decrypting is negligible compared to the disk
transfer rates.

43

00:10.4

00:08.6

00:06.9
o with s/u

00:05.2)
 without s/u

00:03.5

00:01.7

00:00.0

Read Read Read Read Read Read
1x100MB 100x1MB 1x100MB 100x1MB 1x100MB 100x1MB
GBDE GELI No Encryption

The final test was to measure whether different encryption algorithms or
key lengths would affect the performance of GELI in any way. The pre-
sumption was that AES and Blowfish would probably perform better than
3DES when encryption operations are performed in software. However,
since no crypto hardware was available for the testing, 3DES was likely to
be the worst performer.

The first presumption of performance seemed to be correct when write
times using different ciphers were measured (Figure 4). 3DES-192 was
clearly slower than AES-256 or AES-128 when writing a single 100 MB file
or 100 1-MB files. This result was completely expected, since 3DES has to
do three crypto operations (i.e., encrypt, decrypt, and encrypt again),
whereas AES does only one.

A more interesting observation was the relative performance of AES-128
and AES-256. The processing times of these two were practically the same,
which leads to the conclusion that one might as well use AES-256 with
GELL, since the security benefits of a longer key are much bigger than the
insignificant processing impact the longer key might have.

00:51.8

00:43.2

00:34.6

owith s/u
m without s/u

00:25.9

00:17.3

00:08.6

00:00.0 —
Write Write Write Write Write Write Write Write
1x100MB 100x1MB 1x100MB 100x1MB 1x100MB 100x1MB 1x100MB 100x1MB

3DES-192 AES-128 AES-256 Blowfish-256

The other surprise was the performance of Blowfish 256. I would have
expected Blowfish to be on a par with AES but, interestingly enough, it
seems to fall between 3DES 192 and AES. Unless Blowfish has crypto-
graphic properties that AES does not have, one would be tempted to prefer
AES to Blowfish. However, a test with a larger sample may be required to
determine whether AES actually is faster than Blowfish or whether the
result was only a fluke.

Conclusions

An approach using GBDE- and GELI-encrypted file systems with a memo-
ry disk, md(4), was presented. The advantage of this method is the ability
to create several encrypted file systems of different sizes on a normal UFS
file system. With an encrypted file system of 650 MB it is possible to back
up the encrypted image on a CD and save the contents of the file system in
an encrypted format. Furthermore, assuming that the UFS file system is
large enough, it is possible to create new encrypted file systems and mount
them on an ad-hoc basis.

The relative performance of GBDE and GELI was also discussed. It was
discovered that GBDE is significantly slower than GELI using AES 128 on
a memory disk. GBDE was slightly slower than GELI on a raw disk parti-
tion but there is no major performance difference between the two. This
leads to the conclusion that GBDE is unsuitable for use on a memory disk
and, if used, its use should be limited to removable devices such as flash
drives and floppies.

Since GELI uses the crypto(4) framework and has multiple ciphers, the
relative performance of different ciphers was also measured. No crypto
hardware was available for these tests. It was discovered that AES with a
256-bit encryption key performed as well as AES using a 128-bit key, thus
leading to the conclusion that one should be using the longer key because
of its stronger security.

It was also discovered that AES performed better than Blowfish or 3DES,
thus making it the cipher of choice. This observation may have resulted
from the small sample, and further investigations may be called for.

45

