
; LO G I N : O C TO B E R 2 0 0 6 P R AC TI C A L P E R L TO O LS : TI E M E U P, TI E M E D OW N (PA RT 2) 57

D A V I D B L A N K - E D E L M A N

practical Perl tools:
tie me up, tie me
down (part 2)
David N. Blank-Edelman is the Director of Technology
at the Northeastern University College of Computer
and Information Science and the author of the book
Perl for System Administration (O’Reilly, 2000). He has
spent the past 20 years as a system/network admin-
istrator in large multi-platform environments,
including Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He was the
program chair of the LISA ’05 conference and is one
of the LISA ’06 Invited Talks co-chairs.

dnb@ccs.neu.edu

W H E N W E L E F T O F F I N T H E P R E V I O U S
column, I was standing over an anonymous
hash holding a whip. OK, maybe not, but it
did get you to check your back issues of
;login:, no? Actually, we left off with some-
thing much more titillating: the ability to
modify the fundamental nature of how Perl
variables work using modules based on
Perl’s tie() functionality.

At the end of the last column we had just begun
to contemplate the following list of things we
wished a Perl hash could do:

n have elements that would automatically
expire after a certain amount of time had
elapsed

n keep a history of all changes made to it over
time

n restrict the updates that are possible
n always keep track of the top N values or the

rank of the values stored in it
n always return the keys in a sorted order based

on the values in that hash
n transparently encrypt and decrypt itself
n easily store and retrieve multiple values per

key

Let’s take some time to make those wishes (and
more that you didn’t even know you had) come
true, and then we’ll end by discussing how to
create our own tie()-based code.

Expiring Hashes

Hashes with entries that disappear after a certain
time period are easy to construct, thanks to
Tie::Hash::Expire:

An interesting twist on this module is
Tie::Hash::Cannabinol, which describes itself as a
“Perl extension for creating hashes that forget
things.” Specifically, the doc says:

Once a hash has been tied to
Tie::Hash::Cannabinol, there is a 25%
chance that it will forget anything that you
tell it immediately and a further 25% chance

use Tie::Hash::Expire;
tie my %hash, ‘Tie::Hash::Expire’, {‘expire_ seconds’ => 5};
$hash{‘magician’} = ‘Erik Weis’;
$hash{‘musicians’} = [‘Jalil’, ‘Ecstasy’, ‘Grandmaster Dee’];
$hash{‘software’} = ‘Side Effects Software’;

print scalar keys %hash; # prints ‘3’
do something for 6 seconds...
print scalar keys %hash; # prints ‘0’

58 ; L O G I N : V O L . 3 1 , N O . 5

that it won’t be able to retrieve any information you ask it for. Any
information that it does return will be pulled at random from its
keys.

Oh, and the return value from exists isn’t to be trusted, either.

To get back on a slightly more even keel, it should be mentioned that
Tie::Scalar::Timeout or Tie::Scalar::Decay can do similar expiration magic
for scalar variables.

Hashes with a Sense of History

There are two modules that give a hash variable the ability to remember all
changes made over time. Usually when you set a value for a key in a hash,
that value replaces any previous value with no record of there ever having
been a previous value. With Tie::History or Tie::HashHistory, magic takes
place in the background, making it possible to access previous values. For
example, let’s assume we were tracking the price of corned beef. We could
write code that looked like this:

use Tie::History;

my $hobj = tie my %historyhash,’Tie::History’;

$historyhash{‘cornbeef’} = 1.28;
$hobj->commit;

$historyhash{‘cornbeef’} = 1.35;
$hobj->commit;

$historyhash{‘cornbeef’} = 1.25;
$hobj->commit;

The initial tie() line creates a special hash called %historyhash and then
returns an object through which the history methods for that hash are con-
trolled. Values for the key cornbeef are set using the standard notation.
Each time we want to remember the state of the hash, we use the control
object ($hobj) to commit it. At this point in the execution of our program,
if we call the getall() method for the hash control object, we’d see:

DB<1> x $hobj->getall
0 ARRAY(0x50bcac)
0 HASH(0x5248cc)

‘cornbeef’ => 1.28
1 HASH(0x53e624)

‘cornbeef’ => 1.35
2 HASH(0x53e660)

‘cornbeef’ => 1.25

There are other methods such as previous(), current(), and get() that allow
you to retrieve the state of %historyhash at a specific point in the running
history. Revert() will actually revert the hash to a specified position in the
history. Tie::History is pretty spiffy, because it also works for scalars and
arrays.

To keep things moving along, I won’t show you an example for
Tie::HashHistory, but I do want to mention one way that it differs from
Tie::History. Tie::HashHistory is meant to augment other tie() modules and
give them history superpowers. For example, if you were using the
Tie::DBI module talked about in the last column, it might be handy for
debugging purposes to keep a running history of all changes made to a
Tie::DBI’d hash. Tie::HashHistory makes that easy.

; LO G I N : O C TO B E R 2 0 0 6 P R AC TI C A L P E R L TO O LS : TI E M E U P, TI E M E D OW N (PA RT 2) 59

Restrictive Hashes

Hashes are fabulous data structures. This notion of a collection of infor-
mation in key/value pairs is both very powerful and very easy to use. But
hashes can be a bit of a pushover. They are happy to store anything you
throw at them, even mistakes. For example, a hash has no way to know
that the key in:

$authors{‘Charles Dikkens’} = “Hard Times”;

is a typo (after all, it could be the well-known Dutch author). Just as the
use strict pragma offers a good way to avoid variable name typos, the mod-
ule Tie::StrictHash will do the same for hash keys:

use Tie::StrictHash;
my $hobj = tie my %authors, ‘Tie::StrictHash’;

Now we have two things: a hash (called %authors), which will behave in
an unusual way, and a hash control object ($hobj) that will be used to
make changes to that object. %authors is now unusual because, as the doc-
umentation says:

n No new keys may be added to the hash except through the add method
of the hash control object.

n No keys may be deleted except through the delete method of the hash
control object.

n The hash cannot be reinitialized (cleared) except through the clear
method of the hash control object.

n Attempting to retrieve the value for a key that doesn’t exist is a fatal
error.

n Attempting to store a value for a key that doesn’t exist is a fatal error.

So if we wanted to add a new key to the hash, we would call:

$hobj->add(‘Charles Dickens’ => ‘Hard Times’);

Once in place, existing keys are changed just as one would expect:

$authors{‘Charles Dickens’} = ‘Great Expectations’;

In the interests of full disclosure (since this isn’t tie()-related), Perl 5.8.x
versions implement something known as “restricted hashes” that have very
similar properties. Using the Hash::Util module that ships with Perl, it is
possible to lock down a hash or even individual keys in a hash. You don’t
get all of the Tie::StrictHash functionality or its very clear semantics (i.e.,
method calls for making changes), but it doesn’t require installing a sepa-
rate module.

Automatic Ranking

It’s fairly common to write code that reads in a set of values and then has
to report back the rank of each value in the whole list. Tie::Hash::Rank
makes it easy to determine where a particular value stands in the ranking
by constructing magical hashes that return a rank for each key stored in
them instead of the associated value. For example:

use Tie::Hash::Rank;

tie my %rhash, ‘Tie::Hash::Rank’;

grams of sugar
%rhash = (

‘countchocula’ => 12,
‘booberry’ => 15,

60 ; L O G I N : V O L . 3 1 , N O . 5

‘trix’ => 13,
‘cheerios’ => 1,

);

print $rhash{‘countchocula’}, “\n”; # prints 3
print $rhash{‘booberry’}, “\n”; # prints 1
print $rhash{‘trix’}, “\n”; # prints 2
print $rhash{‘cheerios’}, “\n”; # prints 4

There are other similar modules that make it easy to keep track of the top
N values in the hash (e.g., Tie::CacheHash).

Automatic Sorting

There are a few modules that handle keeping a hash’s elements in a sorted
order; these include Tie::Hash::Sorted and Tie::IxHash. If you find yourself
repeatedly sorting and resorting your hash keys before processing, this can
be a big win (especially when dealing with large data sets).

In a related vein, Tie::Array::Sorted helps you maintain an array whose ele-
ments stay (or appear to stay) sorted even in the face of element additions
and deletions. I say “appear” because there is also a Tie::Array::Sorted::Lazy
module in the package that is smart enough to only re-sort the array when
its contents are retrieved. This works well for cases where you have an
array that will be modified quite a bit before being read.

Encypted Hashes and Multi-Valued Storage

We’re getting close to the end of our wish list, so let’s take a quick look at
the last two items on the list so we can move on to creating our own tie()-
based code. The first is the ability to transparently encrypt and decrypt
data in a hash. Tie::EncryptedHash is an excellent module for this purpose
if it fits your program’s model. Tie::EncryptedHash is good for those cases
where you want to create a collection of information that needs to be
encrypted when not in active use.

A hash tied using this module can contain both normal key/value pairs and
“encrypting fields.” Encrypting fields are those key/value pairs that begin
with an underscore (e.g., $hash{‘_name’}, $hash{‘_socsecur’}, etc.). The
hash itself is kept either in transparent/unencrypted or opaque/encrypted
mode. The mode designates whether the encrypting fields found in that
hash are encrypted or not.

To read or modify the encrypting fields in the hash, you unlock it with a
special __password key; deleting this password will lock it again. In locked
mode, you can safely drop the contents of the hash to disk or copy it over
a network without fear of those fields being disclosed (the normal
key/value pairs will continue to stay in plaintext). This is really simple in
practice:

use Tie::EncryptedHash;
use Data::Dumper;

tie my %eh, ‘Tie::EncryptedHash’;

$eh{‘normal’} = ‘no magic here’;

let’s unlock the hash

$eh{‘__password’} = ‘supersecretsquirrel’;

and store an encrypting field
$eh{‘_encrypting’} = ‘now you see it ...’;

; LO G I N : O C TO B E R 2 0 0 6 P R AC TI C A L P E R L TO O LS : TI E M E U P, TI E M E D OW N (PA RT 2) 61

print “transparent: “ . Dumper(\%eh) . “\n”;

lock the hash
delete $eh{‘__password’};

print “opaque: “ . Dumper(\%eh);

The output of this program is:

transparent: $VAR1 = {
‘normal’ => ‘no magic here’,
‘_encrypting’ => ‘now you see it ...’

};
opaque: $VAR1 = {

‘normal’ => ‘no magic here’,
‘_encrypting’ => ‘Blowfish FHt07w3l/xyfd1/c4hskvQ

53616c7465645f5f4e8203d51070213d75fdf19b4c26b13435bc375600c49f
27b07e21be89f631df’
};

The last item on the wish list is one that makes a programmer’s life easier.
Tie::Hash::MultiValue is helpful in those cases where you want to store
multiple values in a single hash key. The standard way to handle this situa-
tion is to store a reference to an anonymous array for that hash key (the
Hash of Lists idea). Tie::Hash::MultiValue actually does this, but it makes
the process a little easier. For example, instead of having to write some-
thing like this:

$mvh{‘mike’} = [qw(greg peter bobby)];

add a new element to the list, not the most pleasant syntax
push(@{$mvh{‘mike’}},’tiger’);

you can write:

use Tie::Hash::MultiValue;

tie my %mvh, ‘Tie::Hash::MultiValue’;

$mvh{‘mike’} = “greg”;
$mvh{‘mike’} = “peter”;
$mvh{‘mike’} = “bobby”;
$mvh{‘mike’} = “tiger”;

to get the same result. The module will also make sure that only unique
values are stored, so that:

$mvh{‘mike’} = “alice”;
$mvh{‘mike’} = “alice”;

only stores “alice” once in the anonymous array associated with the key
“mike.” (A quick warning: The doc for Tie::Hash::MultiValue says that it is
possible to assign multiple values at a time. This unfortunately does not
work in the current version available on CPAN.)

That’s the last of the items on our wish list, but there are still many impres-
sive tie()-based modules available on CPAN that we could talk about. I
could continue to blather on about modules such as Tie::File (which reads
and writes lines in a file as if it were an array), Tie::HashVivify (in which
you call your own subroutine every time you attempt to read a key in a
hash that doesn’t exist), or Tie::RemoteVar (which implements a client/serv-
er model that allows you to share the same variables between programs run-
ning on different machines).

Instead, let’s move on to creating our own tie()-based code.

62 ; L O G I N : V O L . 3 1 , N O . 5

Don’t Do It

As I mentioned in the first part of this series, there are a number of valid
objections to writing tie()-based code. They include a couple of concerns:

n Performance: Tied variables can be quite slow compared to other
approaches, because of all of the overhead.

n Maintainability: Without seeing the tie() call, other programmers can’t
know whether a tied variable will go “oogah-boogah” every time it is
accessed, instead of exhibiting the usual variable behavior.

Both of these are perfectly reasonable concerns, so let me quickly state the
alternative to tie()-based code: Write your code using standard OOP prac-
tices, create objects instead of tie()’d variables, and call the methods of
those objects explicitly. Instead of:

$special{‘key’} = ‘value’; # prints “oogah-boogah”

use something like:

$special->oogahboogah(‘key’,’value’)

instead. Although this is not the most glamorous alternative, it does help
with both performance and maintainability.

No, Really. Tie() Me Up, Tie() Me Down

If you’ve determined you do want to write code for tie() there are a few
ways to go about it. In the interests of space and time, I’m going to show
you only one way, using a very simple example that makes SNMP (Simple
Network Management Protocol) queries using hash semantics. If you are
not familiar with how SNMP works or the Net::SNMP module (perhaps a
future column topic), the short version is that it is a protocol for querying
management information from a device (e.g., a router).

The standard way to construct a tie()-based module requires a bit of Perl
OOP knowledge. If you don’t have that knowledge or just want something
quick and dirty you can use the Tie::Simple module to hide the details for
you. These details are found in the _perltie_ manual page (perldoc perltie)
and are the subject of Chapter 9 in Damian Conway’s Object Oriented Perl.

Here’s how the code you are about to see works. To create tie() code, you
build an OOP-based package. This package creates objects with methods
that implement all of the standard variable operations (fetch, store, exists,
delete, etc.) required of that variable type. Code for tie()-ing scalars needs
to contain 4 subroutines to cover all of the operations; for hashes the num-
ber is 9, and for arrays it goes to 13. To avoid having to write all that code
for this example, we’re going to inherit a set of default subroutines from
Tie::StdHash module in the Tie::Hash package. These subroutines mimic
the standard hash behavior, leaving us free to redefine just the operations
that suit our purpose. In the example that follows, we redefine only the
TIEHASH operation, called when the tie() function is executed, and FETCH,
called when a key is looked up in a hash.

Here’s the code, with explanation to follow:

package SNMPHash;
require Tie::Hash;
use Net::SNMP;

@ISA = (Tie::StdHash);

sub TIEHASH {
my ($class, $arghash) = @_;

; LO G I N : O C TO B E R 2 0 0 6 P R AC TI C A L P E R L TO O LS : TI E M E U P, TI E M E D OW N (PA RT 2) 63

create the object
my $self = {};
bless $self, $class;

create an SNMP session and store it in the object
my ($session, $error) = Net::SNMP->session(%{$arghash});
die “Could not establish SNMP session: $error” unless defined $session;
$self{‘session’} = $session;

return $self; # return the object
}

sub FETCH {
my $self = shift;
my $key = shift;

do the actual SNMP lookup
my $result = $self{‘session’}->get_request(-varbindlist => [$key]);

return $result->{$key};
}
1; # to allow for loading as a module

Here’s a very brief tour of the code: We start by declaring the name of the
package (which will become the class of the object created). After the
usual loading of modules we declare that we’ll be inheriting from the
Tie::StdHash module. This gives us the freedom to redefine two operations,
TIEHASH and FETCH.

For TIEHASH, we create an empty object, initialize an SNMP session object
based on the arguments in the tie() statement, and store a reference to this
session in the object for later use. That use happens in the very next sub-
routine when we define what should happen upon key lookup. In this
case, we take the key, turn it into a standard SNMP _get_ request, and then
return the answer. When this happens it looks like the tie()’d hash has
magical keys consisting of SNMP variables (in OID form), which can be
queried to see the live data.

How does this get used?

assumes we saved the previous example in a file called SNMPHash.pm
someplace Perl can find it
use “SNMPHash”;
tie my %snmphash, ‘SNMPHash’,

{ ‘-hostname’ => ‘router’, ‘-community’ => ‘public’ };
this long string of numbers is just a way of referencing (in SNMP
OID form) the SNMP variable that holds the description for a system
(i.e. sysDescr.0). See Elizabeth Zwicky’s article at
http://www.usenix.org/publications/login/1998-12/snmp.html or
another SNMP tutorial for more info
print $snmphash{‘.1.3.6.1.2.1.1.1.0’},”\n”;

This yields something like:

Cisco Internetwork Operating System Software
IOS (tm) s72033_rp Software (s72033_rp-PK9S-M), Version 12.2(18)SXD1,
RELEASE SOFTWARE (fc1)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2004 by Cisco Systems, Inc.
Compiled Wed

There’s a ton of things missing from this sample code; it is just meant to be
a snippet to start your motor running. There’s virtually no error checking.
Most of the hash operations aren’t implemented. (It isn’t exactly clear just

64 ; L O G I N : V O L . 3 1 , N O . 5

how all of the SNMP operations should map onto hash operations. Some
are obvious, but the others deserve some head scratching.) Still, you’ve
now received a taste of what it takes to write your own tie()-based code.
And with that, we need to wrap up this issue’s column. Take care, and I’ll
see you next time.

4th USENIX Symposium on Networked
Systems Design & ImplementationNSDI ’07 April 11–13, 2007 Cambridge, MA

Save the Date!

Sponsored by USENIX in cooperation with ACM SIGCOMM and ACM SIGOPS

www.usenix.org/nsdi07

Join us in Cambridge, MA, April 11–13, 2007, for NSDI ’07, which will focus on the design principles

of large-scale networks and distributed systems. Join researchers from across the networking

and systems community—including computer networking, distributed systems, and operating

systems—in fostering cross-disciplinary approaches and addressing shared research challenges.

