
2 ; L O G I N : V O L . 3 1 , N O . 4

R I K F A R R O W

musings
rik@usenix.org

O N E O F T H E A D V A N TA G E S O F B E I N G
a “greybeard” is that I get to go on about
just how hard things used to be. You know,
like how I had to walk to school barefoot,
in the snow, and uphill in both directions.
That is a bit of an exaggeration, of course. I
did have shoes. But I did also build my own
first computer, and I modified the mother-
board in my second as well.

I worked for a while at NorthStar Computers, a
Berkeley startup whose first product was a disk
controller for floppy drives. By the time I arrived
in 1979, the company had been selling Horizon-2s
both in kit and assembled forms. I got one of the
last four kits and went to work.

The Horizon-2 [1] used a 6-MHz Z80, eight-bit
processor on the motherboard, along with two se-
rial ports, one parallel port, and twelve connectors
on an S-100 bus. That “100” in the bus name
means 100 pins per slot, so just soldering in the
connectors meant 1200 careful solder joints. Disk
storage was in the form of proprietary 5.25-inch
floppy disks that held 90 kilobytes each, and
memory maxed out at 64 kilobytes—although you
couldn’t use the last 8 kilobytes, as the ROM, con-
taining the boot code and floppy disk drivers,
overlapped 1 kilobyte of this memory space.

Later advances included double-sided drives with
a whopping 360 kilobytes per disk, then a five-
megabyte hard drive (which all by itself cost more
than the entire system).

Instead of using NorthStar DOS, I would use
CP/M, created by Digital Research, a company
whose name might have become as famous as Mi-
crosoft except for some executive decisions made
while dealing with IBM. I eventually added a sur-
plus 20-MB hard drive, patched a driver into
CP/M, and sold the souped-up Horizon-2 to a col-
lective [2] which ran a grocery delivery business
on this system for several years.

Fast Forward

Besides the observation that this primitive system,
and ones like it, were used to run businesses,
some other principles found in the Horizon-2 sur-
vive to this day. For example, every memory cell
in DRAM [3] must be refreshed every 64 ms or
less by reading in a row of memory, then rewriting
it. Memory refresh occurs in parallel with the real
work done by memory, supplying data to the

processor. In the Horizon and other S-100 bus designs, CPUs accessed
memory synchronously, controlling all bus signals at the awesome speeds
of up to 10 MHz.

I continued to use systems with CPUs running at less than 10 MHz
through most of the 1980s. Compiling was slow but not impossible, be-
cause hard disks sped up disk-bound operations tremendously over floppy
disks. But even at these slow bus speeds, access to memory was not instan-
taneous.

Before a row of memory can be read, the address that represents that row
must be decoded. The decoding takes time, generally several bus-clock cy-
cles (a delay called RAS; see [4] and [5]). After address decoding, the con-
tents of memory are copied from sense registers to where they can be
copied to the bus. The rate at which the actual copying of memory takes
place depends on the type of memory, the width of the bus, and the fre-
quency of the bus.

Over the years, CPU and DRAM chip developers have come up with
schemes for improving the transfer rates between the CPU and DRAM. Bus
frequencies have gotten faster, buses have gotten wider, and DRAMs have
also gotten faster—but nowhere near as fast as CPUs have become. For ex-
ample, a 3.2-GHz Xeon processor is running four times faster than its
memory bus when various tricks, such as multiple reads per bus cycle, are
taken into account.

Caches were designed to hide this discrepancy as much as possible. Level 1
cache resides on the processor die itself and runs at the same clock rate as
the processor. You might find yourself wondering why CPU designers don’t
use more Level 1 cache than we typically see, but the problem is that chip
designers must make several tradeoffs. Cache uses Static RAM (SRAM),
which is much faster than DRAM, does not require refreshing, but also re-
quires many more transistors to implement a single bit. More transistors
means more die real estate, as well as more energy to support. Also, the
process of address decoding is an issue for cache just as it is for DRAM,
and, to speed up address decoding, various schemes that can quickly deter-
mine if a cache line holds a particular address are used.

If there is a Level 1 cache miss, perhaps the appropriate line of memory
will be found in Level 2 cache, which exists off the CPU die but takes
longer to access. Since this is also SRAM, it too is faster than DRAM, and
Level 2 cache generally occupies a separate chip (or chips), so there can be
more of it. But these memory accesses are slower than those for Level 1,
forcing the CPU to wait for memory to become available. If the desired ad-
dresses in memory are not found in any cache, then DRAM must be ac-
cessed. And DRAM introduces both the RAS setup time and data transfer
at the fastest rate that the memory bus supports. During this time, the
processor may become idle as pipelines empty, and will continue idle until
the wait state induced by slower memory ends.

Even 6MHz Z80 processors suffered wait states, and this problem has only
gotten worse over time. Chip designers have worked around this problem
as best they can, and we can see this in system benchmarks. That is, faster
processors generally mean better benchmarks, but these benchmarks do
not scale linearly. In other words, increasing the processor speeds by 20%
do not result in real-world benchmarks increasing by 20%. In fact, the rela-
tion between processor speeds and benchmark performance varies all over
the place, something you will notice if you read motherboard reviews. And
memory is a major source of this variation. Other sources include the other
buses and I/O devices.

; LO G I N : AU G U ST 2 0 0 6 M U S I N G S 3

Steve Johnson, during his Guru session at Annual Tech ’06 in Boston,
demonstrated that how you store and access elements in an array can make
enormous differences in CPU-bound performance. Processing data ele-
ments stored sequentially in two different arrays was many times faster
than accessing data elements that appeared separated by just a small num-
ber of bytes. Johnson’s talk stirred up a lot of discussion, because it makes
the points about caches, bus speeds, and memory concrete, as well as un-
covering some interesting performance surprises.

The Fix

Fixing these performance bottlenecks poses a big problem for the leading
CPU vendors, Intel and AMD. AMD has taken the lead currently through
the use of faster bus designs. But is this the only way to go? Sun Micro-
systems engineers have bet that there is another way that will work well
for some, although not all, applications.

I had heard about a new line of Sparc CPUs that include multiple cores,
each able to quickly (one cycle) switch among four threads. The multi-
threading capability of Sparc chips is old news, but having up to eight
cores per chip was something new. I had learned about the new Sun de-
signs at BSDCan (see summary in this issue) and read what I could find
about the design before I came to Boston. Then, the first night there,
Richard McDougall of Sun walked up with a T2000, a 2U rackmount sys-
tem containing the new CPU. McDougall and Jim Maury used the T2000
during their Solaris performance and debugging class and set it up for use
during Peter Galvin’s Solaris classes, so people had plenty of time to “expe-
rience” the new Sun design.

What the Sun engineers said was that when running a highly threaded ap-
plication such as Apache or Oracle, the eight cores, each running at 1.2
GHz, can operate without wait states as much as 80% of the time. This fig-
ure really had me wondering about the percentage of wait states for dual
Xeon processors running at three times that clock rate. Whereas the rack-
mounted T2000 had the usual noisy-as-a-vacuum-cleaner fans, the proces-
sor itself has a short heat sink, with no fan on it, and it remained cool to
the touch—a feature that Sun hopes will make this new twist on old Sparc
technology popular where heat is an issue.

Of course, if your application is single-threaded and includes lots of float-
ing-point calculations, then this design will not work well for you. (There
is a single floating-point processor for all cores in the current multi-core
Sparc, something that will change in the future.) However, since I have
been writing and dreaming about how multi-core systems could be a much
better design for future operating systems and for security, I was pretty ex-
cited about my face-to-face encounter with the T2000.

I have often written in my column that games, not business software, have
been the strongest driving force behind the adoption of Windows and the
design of faster PC hardware. If you’re not playing first-person shooters,
you don’t need multi-gigahertz processors and fan-cooled video cards. I
used word-processing software (WordStar) that worked quite well on a 10
Mhz processor for many years, writing code, documentation, and even
books without using a system that could double as a space heater or high-
end graphics workstation. There certainly are applications that do make
excellent use of fast hardware today, such as Web browsers, Google Earth,
and the many applications of cluster computing we hear about.

4 ; L O G I N : V O L . 3 1 , N O . 4

The point I’d like to leave with you is that CPU speed is not the current
barrier to performance that it might seem to be. System performance relies
on the entire system and will be limited by the slowest component or the
slowest pathway to that component.

The Lineup

In the June issue, Kurt Chan wrote about disk types and architectures from
the perspective of a NAS vendor. In this issue, Mark Uris writes about his
experiences building a high-performance, multi-terabyte storage system at
NCAR. The design of DataMonster uses nearline enterprise SATA drives, a
design decision that at first glance appears to conflict with what Chan
wrote. But I believe that the applications found at NCAR mainly result in
large file transfers, not OLTP, which Chan cited as the main reason for
building with enterprise drives.

Mark Burgess has written the first in what I hope will be a series of articles
about configuration management. Darrell Fuhriman has written an article
explaining identity management from the perspective of a sysadmin, and
Andy Seely writes about administering systems used to support DoD oper-
ations and how that differs from normal sysadmin.

In the Security section, Eric Sorenson discusses creating your own network
black hole as a technique for monitoring your network. Pete Herzog has
written about Dru Lavigne’s research into TCP/IP services, uncovering the
history behind many of the obscure services you may have noticed.

Several authors of papers that appeared in the NSDI symposium (see sum-
maries in this issue) have written articles about their projects. KyoungSoo
Park and Vivek Pai write about CoBlitz, a Content Distribution Network
(CDN) that works with unmodified Web browsers and servers; it per-
formed faster than BitTorrent in real-world tests. Better yet, you can start
using CoBlitz today. Ryan Peterson, Venugopalan Ramasubramanian, and
Emin Gün Sirer write about Corona, a practical publish-subscribe system
for the Web that solves the problems posed by RSS and current publish-
subscribe systems.

In the Columns section, David Blank-Edelman begins a two-part series
about the use of tie() to associate variables with databases, a practice some
people (but not David) consider controversial. Robert Haskins discusses
traffic-shaping tools that can be used both by ISPs and by any organization
with a lot of Internet-bound traffic. Heison Chak explains the differences
between soft and hard phones that are using VoIP. Finally, there is an excel-
lent assortment of book reviews.

R E F E R E N C E S

[1] The NorthStar Horizon: http://www.old-computers.com/museum
/computer.asp?c=50.

[2] The Purple Rose Collective: http://fic.ic.org/video/purpleroseinfo.php.

[3] Explanation of DRAM: http://en.wikipedia.org/wiki/DRAM.

[4] A clear explanation of different frontside bus types and what overclock-
ing means: http://www.directron.com/fsbguide.html.

[5] Guide to understanding DRAM terms: http://www.dewassoc.com
/performance/memory/memory_speeds.htm.

; LO G I N : AU G U ST 2 0 0 6 M U S I N G S 5

