32

KYOUNGSOO PARK AND VIVEK S. PAI

CoBlitz: a scalable

large-file transfer
service

KyoungSoo Park is a fourth year Ph.D. studentin com-
puter science at Princeton University. His research fo-
cuses on the performance and security issues in
large-scale distributed systems such as content dis-
tribution networks (CDNs) and the domain name
system (DNS).

kyoungso@cs.princeton.edu

Vivek Pai is an Assistant Professor at Princeton Uni-
versity, where his research spans operating systems,
networking, and high-performance applications. His
research group is responsible for the CoDeeN sys-
tem, described at http://codeen.cs.princeton.edu.

vivek@cs.princeton.edu

;LOGIN: VOL. 31, NO. 4

WITH THE RECENT EXPLOSIVE GROWTH
in the scale and the size of Internet file
downloads, we need techniques that pro-
vide high performance without burying
servers under heavy loads. CoBlitz provides
a timely solution to this, using unmodified
Web browsers and servers as its clients and
origin servers, a locality-aware front-end
network, and a bunch of caching reverse
proxies that have shown performance that
meets or exceeds BitTorrent in most cases.
And, best yet, CoBlitz is available for use to-
day.

As bandwidths to the home increase, large file
downloads are becoming increasingly popular on
the Internet, with movies and software distribu-
tions commonly ranging from the hundreds of
megabytes to several gigabytes. In its first five
months of providing videos, Apple’s iTune store
provided over 15 million copies of TV shows and
movie trailers, and Google Video now provides
free downloading of thousands of video clips,
from humorous home videos to professional mu-
sic videos. By using small display sizes and high
compression ratios, these files tend to be relatively
small compared to HD-quality broadcast. Howev-
er, as end-user bandwidths increase, we can imag-
ine services providing much higher-quality down-
loads, with a corresponding increase in file sizes.
New versions of Linux have long been distributed
through the Internet, and their mirror sites get
very busy shortly after every new release.

For sites that have a burst of traffic after every
new release and whose users are sufficiently so-
phisticated, peer-to-peer protocols such as BitTor-
rent can be useful to offload traffic from the origin
server and to leverage bandwidth available from
the clients. For other scenarios, however, this op-
tion may not be as attractive, particularly if the
content is not bursty or predictable, if the user
population does not have browser plug-ins, or if
the content consumers are other programs that
only understand HTTP transfers. In these cases, it
may be desirable to have a managed service that
can offload the large file traffic from the origin,
while still providing transfer via standard HTTP.

Although Content Distribution Networks (CDNs)
have successfully provided this service commer-
cially for standard Web content, very large files
can pose some challenges for them. In particular,
CDNs s typically exploit main-memory caching of



;LOGIN: AUGUST 2006

Web objects, since they have a whole-file access model and a mean transfer
size of around 10 kilobytes. Main-memory caching allows CDNs to reduce
latency (since main-memory transfers can be hundreds of times faster than
disk) and improve throughput, by avoiding disk seeks. If CDN providers
start serving multi-gigabyte transfers from these same boxes, the compe-
tition for the machine’s main memory can result in thousands of small

files being evicted when a large file becomes popular. If several large files
become popular simultaneously, then the main memory may not have
enough room to cache them all and will thrash on disk accesses.

This is the scenario that we examine: how to provide a service that can
transparently support the efficient transfer of very large files, using stan-
dard HTTP infrastructure (clients and servers). It should be capable of
handling flash crowds as well as files that have a longer-lived demand, all
without pre-positioning content or rehosting or reformatting the files.

Our Solution: CoBlitz

Our solution to this problem is a system called CoBlitz, which operates
without any modification of the HTTP protocol, the servers, or the clients.
CoBlitz evenly distributes the load of handling large-file requests to many
participating nodes, to maximize resource utilization and reduce the origin
server load dramatically.

The main idea of CoBlitz is to transform the large-file distribution problem
into a regular small-file CDN scenario. CoBlitz transparently splits large-
file requests into many requests for pieces of the file, called chunks, and
has the chunks cached at multiple proxies in the content distribution net-
work. Each chunk represents a certain range of a file, but with a little
tweaking, the proxy handles it like a regular small file, thus benefiting
from whatever caching strategy the proxy uses. To reduce the memory con-
sumption on each node, CoBlitz arranges downloads so that each node is
only responsible for caching specific ranges of the file. The server sees a re-
duction in traffic once CoBlitz caches the file to be served. Clients also see
downloading speed improvement, because CoBlitz takes advantage of par-
allel chunk downloads while delivering to its client.

Another benefit lies in the easy deployment: CoBlitz looks like any other
Web CDN, and using it is as simple as rewriting the links to be served to
point to CoBlitz instead of directly referring to the origin server. The Co-
Blitz service just looks like a regular Web server to the client, so existing
browsers, download tools such as wget and curl, or even Web services
agents will all operate normally.

The Gory Details

How is this possible? Figure 1 shows the basic operation of CoBlitz. To in-
crementally build on an existing CDN, all of the “smarts” of CoBlitz are
contained in a daemon that runs as a separate process on each CDN node.
This agent looks like a standard Web server from the outside, but internal-
ly it splits the large-file request into many chunk requests, sends them to
the CDN, merges the responses on the fly, and delivers them to the client
in order. To improve the end-user throughput by multi-path parallel chunk
downloads, it keeps a TCP-like sliding window of “chunks” and dynami-
cally adjusts the window size to prevent the origin server or the infrastruc-
ture itself from getting overloaded.

COBLITZ: A SCALABLE LARGE-FILE TRANSFER SERVICE

33



34

;LOGIN: VOL. 31, NO. 4

Rev
Chunk 1
DNS A Resolves “coblitz.codeen.org (3) Proxy
> Rev
w ; Chunk 2
/ e Proxy
v ,\»\Q
Client / CDN node
TGN e
i Chunk n
Proxy

FIGURE 1: STEP-BY-STEP COBLITZ OPERATION.
Here is how CoBlitz works step by step:

1. A browser (or any HTTP-aware client) asks for a CoBlitzed URL. The
format of a CoBlitzed URL is http://coblitz.codeen.org:3125/URL,
where the URL is the original link before CoBlitz. Then the browser
resolves the name “coblitz.codeen.org,” which finds the closest CDN
node to the client, and sends the request to it. The agent running on
the CDN node is listening on port 3125 and accepts the request from
the client.

2. Upon receiving the large-file request, the agent splits it into chunk
requests and hands them to its local proxy. The local proxy runs a
deterministic hashing algorithm (called Highest Random Weight [5])
to map each chunk request to a reverse proxy in its peer set. Select-
ing peers and maintaining the peer set are being done at the CDN
level; this topic will be discussed later in the article.

3. The selected reverse proxy receives and serves the chunk request.
If the chunk request is a cache hit, it is served from its cache right
away, but in case of a cache miss, the reverse proxy fetches it from
the origin server. The reverse proxy uses an HTTP/1.1 byte-range
query to fetch the chunk rather than the whole file from the origin
server. After fetching the chunk, the reverse proxy caches it as a
small file rather than a range of a file.

As mentioned, the agent keeps a sliding window of chunks, and it retries
any slow chunk via a different replicated reverse proxy. The retry timeout
is calculated by a combination of the exponentially weighted moving aver-
age and standard deviation for recent chunks. For each retry, the timeout
exponentially backs off to avoid getting overly aggressive. We allow up to
two parallel downloads per chunk and let them compete with each other
in case of retry. In practice, we see that about 10-20% of the chunks are re-
tried.

The size of the chunk window gets adjusted as the transfer progresses.
Whenever a retry kills off the head chunk in the window, we decrease the
window size by one chunk. So when there is a problem, we can shut down
the whole window within one maximum round-trip time (RTT). We in-
crease the window size by 1/log(x) chunks, where x is the current window
size (i.e., we use 1 when x = 1), when a chunk finishes in less than the av-
erage chunk downloading time. We increase a bit aggressively when the
window size is small as with the “slow start” phase in TCP, but when the
window size converges, the window growth slows down.



;LOGIN: AUGUST 2006

Challenges

Although the basic algorithm is relatively simple, the real challenge is to
run it in a real distributed environment. With CoDeeN as its base delivery
CDN [6], CoBlitz has been operational on PlanetLab [4] (on 600+ nodes,
at 300+ sites, and in 30+ countries) for over two years. With the feedback
of its real users, CoBlitz has fixed a number of problems in operation and
evolved its peering algorithm.

CoBlitz adopts unilaternal, asynchronous peering as its peer-selection policy.
Each node is independent in choosing its own peers (reverse proxies) and
does not depend on any synchronous group membership maintenance al-
gorithm, which can incur prohibitive delays in practice. The rationale be-
hind this decision is to favor simplicity and robustness and to survive par-
tial network connectivity [2] problems with minimal effort. As a result,
scalability is easily achieved, because one can simply add more nodes as
they are available, without changing or reconfiguring the peering structure.

However, unilateral peering does not guarantee perfect clustering (a clique
in which each member knows which nodes other members are peered
with) by design and can produce many different target reverse proxies for
the same chunk, owing to differences in the peering sets. This behavior
can be undesirable, because it can overload the origin server in case of
cache misses, reducing resource utilization. To address the problem, we in-
troduce proximity-based multihop routing, which routes the request to the
best peer in the local neighborhood. Instead of going to the origin server
from the first hop, each hop reruns the HRW algorithm with its own peer
set to see whether any better node exists, and it reforwards the request to
the better node if it exists. Each hop repeats this process until there is no
better node and only the last node, a local optimum node, sends the re-
quest to the origin server. This algorithm creates an implicit overlay tree
for each chunk, and nodes in the path to the origin cache the chunk while
delivering it to their descendants. In this way, if other nodes near the inter-
mediate nodes in the tree look for the chunk, the request is served without
getting to the best node, distributing the load. In practice, 3-15% of
chunks require an extra hop, and less than 1% of chunks are forwarded
more than once.

Performance

To get some sense of the relative performance of this system, in Figure 2
we compare CoBlitz with BitTorrent and direct downloading. We use 400
PlanetLab nodes around the world as clients to simultaneously fetch a
50MB file from a single Web server at Princeton. Although CoBlitz is not
intended to replace BitTorrent, this test gives some sense of CoBlitz as a
reasonable choice for similar scenarios. This particular test is designed to
resemble a flash crowd, and more tests can be found in our paper [3]. We
tune BitTorrent for performance, allowing the origin and all peers to act as
seeds for the duration of the test. BitTorrent clients take a variable amount
of time to find their peers, and for the sake of a fair comparison, we have
the CoBlitz clients delay by the same amounts. We show four measure-
ments: direct downloading from the origin, BitTorrent, CoBlitz (in order),
and out-of-order CoBlitz. Whereas CoBlitz normally operates by delivering
all data in order to the client, we can configure it to deliver chunks as they
are ready, and let the client assemble them. (Although this breaks our goal
of using unmodified clients, it also allows us to see what price we pay for
HTTP compatibility.) Other tests are shown in our paper [3].

COBLITZ: A SCALABLE LARGE-FILE TRANSFER SERVICE

35



=X
N

0.8r-

06

0.4+

¥ Direct
x BitTorrent
<l In-order CoBlitz ,
>Out-of-order CoBlitz
1 1 1 1
5 6 7 8 9
Throughput (Mbps)

0.2

Fraction of Nodes with Throughput <

FIGURE 2: THROUGHPUT DISTRIBUTION FOR ALL LIVE PLANET-
LAB NODES.

The most obvious lesson from this test is that both CoBlitz and BitTorrent
are greatly preferable to having a large number of clients download directly
from a single server. Even a well-connected campus such as Princeton is
able to achieve only 250 Kbps on average to our worldwide clients. BitTor-
rent does much better, achieving 2.52 Mbps. CoBlitz outperforms BitTor-
rent at 79% of the clients, and it achieves an average download rate of 2.99
Mbps. The out-of-order CoBlitz shows the absolutely best performance at
3.68 Mbps, beating BitTorrent across the spectrum by 55-86%. The higher
performance comes at the cost of incompatibility and would require our
own browser plug-in, so we do not deploy this option.

In addition to better performance, CoBlitz better utilizes the contents
fetched from the origin server as well. By fetching one copy from the ori-
gin server, CoBlitz serves 43-55 other nodes, whereas BitTorrent serves
about 35 nodes. CoBlitz achieves about a 98% cache hit rate in this test,
even when the document has never been seen before, dramatically reduc-
ing traffic to the origin.

Can | Use It Now?

CoBlitz was designed and developed to easily provide public access and is
being used as Fedora Core mirror in six different locations worldwide, as
well as a document-caching server for the CiteSeer Digital Library [1], pro-
viding over 50,000 papers through CoBlitz. Figure 3 shows the aggregate
throughput of the CoBlitz Fedora mirror when Fedora Core 5 was released,
on March 20, 2006. We have only a single origin server to serve Fedora
Core, but with the help of CoBlitz, it achieved a peak delivery throughput
of 700 Mbps and sustained over 400 Mbps for several days. This traffic was
client-limited; even at these rates, we had extra capacity in our system,
since our other tests have shown aggregate throughputs as high as 3 Gbps.

500 k

400 k

200 k

HIAILI0 1901 ¢ 1001084

A5-mih xmit

12:00 18:00 00; 00 08; 00 12:00 18:00 00; 00

FIGURE 3: COBLITZ TRAFFIC IN MBPS (LABELED AS “K”)
ON RELEASE OF FEDORA CORE 5, AVERAGED OVER
15-MINUTE INTERVALS.

36 ;LOGIN: VOL. 31, NO. 4



;LOGIN: AUGUST 2006

In running CoBlitz as a public service, we have to balance simplicity with
operational overhead. As mentioned earlier, using CoBlitz simply involves
adding the prefix “coblitz.codeen.org:3125” to any URL. For example, if
you want to serve http://www.example.com/big-file.zip through CoBlitz,
you simply need to convert it to http://coblitz.codeen.org:3125/www
.example.com/big-file.zip and make it a link on any page you want. How-
ever, allowing this to happen to any URL would open us to unlimited
bandwidth-shifting and possibly other forms of abuse, such as transferring
copyrighted material without permission. To keep this service running for
the technical community, we have restrictions in place that disallow public
use of CoBlitz for entertainment media formats (e.g., images, audio, or
video) but allow downloads of software, PDF documents, etc. Full details
are at our Web site, http://codeen.cs.princeton.edu/coblitz/. Universities
can use it virtually without restriction, as can other sites we whitelist. If
you have a technical or nonprofit site and would like to try CoBlitz for
your media transfers, please send email to KyoungSoo (kyoungso@cs
.princeton.edu) to inquire about getting added to the whitelist.

REFERENCES

[1] CiteSeer Scientific Literature Digital Library: http://citeseer.ist.psu.edu/.

[2] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and 1. Stoica, “Non-
transitive Connectivity and DHTs,” in Proceedings of the 2nd Workshop on
Real, Large Distributed Systems (WORLDS 05) (Berkeley, CA: USENIX,
2005).

[3] K. Park and V. S. Pai, “Scale and Performance in the CoBlitz Large-file
Distribution Service,” in Proceedings of the 3rd Symposium on Networked Sys-
tems Design and Implementation (NSDI '06) (Berkeley, CA: USENIX, 2006).

[4] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A Blueprint for In-
troducing Disruptive Technology into the Internet,” in Proceedings of the
First ACM Workshop on Hot Topics in Networks (HotNets-I) (Princeton, NJ,
2002).

[5] D. G. Thaler and C. V. Ravishankar, “Using Name-based Mappings to In-
crease Hit Rates,” IEEE/ACM Transactions on Networking, 6(1) (Feb. 1998):
1-14.

[6] L. Wang, K. Park, R. Pang, V. S. Pai, and L. Peterson, “Reliability and Se-
curity in the CoDeeN Content Distribution Network,” in Proceedings of the
2004 USENIX Annual Technical Conference (Berkeley, CA: USENIX, 2004).

COBLITZ: A SCALABLE LARGE-FILE TRANSFER SERVICE

37





