20

TOM HAYNES

introduction to

THE ZETTABYTE FILE SYSTEM (ZFS) IS
the replacement file system for UFS. In a
nutshell, ZFS creates pools of data across
multiple disks. It manages the complexity
of formatting, partitioning, mirroring, and
other tasks for the administrator.

ZFS

Tom Haynes is an NFS developer for Sun
Microsystems, Inc., and is interested in the cost dif-
ferential between open source and commercial
offerings. He is exploring those costs by using
OpenSolaris to design a NAS appliance.

tdh@excfb.com

;LOGIN: VOL. 31, NO. 3

You can search on Google and find many glowing
testimonials about how ZFS was deployed, about
how easy it was, about how great the software is,
etc. But how much fun is it to just read about
everything working out as expected? How often
does that occur in your experience? Do we tune
into “I Shouldn’t Be Alive” on the Discovery
Channel or “I Haven't Died Yet” on the
Established Channel?

When I proposed this article, I wanted to write
about a 1-terabyte NAS file server based on Open-
Solaris. To minimize cost, all of the components
were to be commodity parts and the drives would
be SATA. What I'm going to write about is an
exploration of ZFS on a 300 GB IDE drive. Oh,
and I'm going to illustrate how the best-laid plans
go astray. I'm also not going to define all of the
ZFS or filesystem terminology—again, you can
pick this stuff up online.

When you deploy either Solaris 10 or OpenSolaris
on hardware not manufactured by Sun Micro-
systems, you need to do some research for com-
patibility. The best resource is the BigAdmin HCL,
maintained at http://www.sun.com/bigadmin/

hcl/. This Hardware Compatibility List details
experiences with various x86 systems and compo-
nents with the different flavors of Solaris. I picked
the MSI K8N Master2-FAR motherboard because
of the support for the NVIDIA nForce4 chip set,
the support for the two GigE Ethernet controllers,
and the ability to support four SATA drives with-
out an additional controller card. Note that this
MSI MB utilizes an NVIDIA nForce4 Host Bus
Adapter. The Sun Ultra 20 also utilizes NVIDIA
nForce chip sets to handle the HBA duties.

Right after I ordered this MB, bug 6363449 was
filed on the Ultra 20. Basically, the NVIDIA
nForce4 gets confused with the ZFS label written
to the SATA drives. There are some measures
mentioned in the bug report to get the drives
working, but they do not work on my MB.

I had finally constructed my system, loaded
Nevada b27 on it, done some fun things with ZFS,
and powered the machine off for the night. That's
when I found out about the bug. See, the fan was

;LOGIN: JUNE 2006

very loud. The system would not reboot the next morning. Considering
the bad luck I had with the system, I named it wont, as in “wont work.” I
was able to identify the bug with help on the OpenSolaris discussion
forums. I tried booting with the drive entries set to “none” in the BIOS,
but still no joy. I disconnected the SATA drives and the system booted fine.
By the way, the SATA connectors are very fragile; I broke one, and I would
advise you not to reinsert the cables too often.

A limiting factor in getting parts working in a home office is that you
might just have one of everything. I don't have another system in which I
can put a different VTOC on the drives. (Just like I only had one power
supply, one MB, one case, and one video card when I was troubleshooting
the original reason the system would not boot: The video card was not
compatible with the MB.)

I actually learned a lot about OpenSolaris during this very frustrating
process. Among other things, I figured out how to use kmdb (kernel
debugger), how to boot the system into the console from grub, how to
wire the console, and how to force a core.

So I've hit the cutting edge of OpenSolaris and it appears I have two choices:

1. Convince the Solaris SATA developers that the bug needs to be fixed
ASAP.
2.Hunker down and fix the issue myself.

The only reason there was any urgency on this bug was the deadline for
this article. And I've been too busy with my new job to tackle the code
myself.

But is there a third choice, besides RMAing the whole mess and trying my
luck again?

Yes, there is actually a cheap alternative—just add another IDE drive. ZFS
is quite capable of working with slices and not just disks. Sure, you intro-
duce a single point of failure and bypass many of the benefits of having
mirrored storage. But the goal is to play with ZFS, and to do so cheaply.

I must admit I struggled with this decision; I'm used to NAS boxes that
have a single storage partition spread over multiple disks, not a NAS box
that has multiple storage partitions spread across a single disk.

I took a 300 GB IDE drive and created four equal slices of 68 GB. You can
do this with the following format:

Note that, under OpenSolaris, disks are assigned names of the form controller

format
Searching for disks...done

AVAILABLE DISK SELECTIONS:
0. c0d0 <DEFAULT cyl 4862 alt 2 hd 255 sec 63>
/pci@0,0/pci-ide@6/ide@0/cmdk@0,0
1. c0d1 <DEFAULT cyl 36477 alt 2 hd 255 sec 63>
/pci@0,0/pci-ide@6/ide@0/cmdk@1,0
Specify disk (enter its number): 1
format> partition
partition> p
Current partition table (original):
Total disk cylinders available: 36477 + 2 (reserved cylinders)

Part Tag Flag Cylinders Size
0 stand wm 3- 8879 68.00 GB
1 stand wm 8880 - 17756 68.00 GB

Blocks
(8877/0/0) 142609005
(8877/0/0) 142609005

INTRODUCTION TO ZFS

21

22

backup
stand
stand
stand

boot
alternates

©O© 00 OO b~ WwN

;LOGIN: VOL. 31, NO. 3

unassigned
unassigned

wm
wm
wm
wm
wm
wm
wu

wu

0-36476 279.43 GB (36477/0/0) 586003005

17757 - 26633 68.00 GB (8877/0/0) 142609005

26634 - 36510 68.00 GB (8877/0/0) 142609005
35510-36476 7.41 GB (967/0/0) 15534855

0 0 (0/0/0) 0

0 0 (0/0/0) 0

0- 0 7.84 MB (1/0/0) 16065
1- 2 15.69 MB (2/0/0) 32130

ID and disk ID. So “c0d1” is the slave on the first controller. We can further
reference the different slices on the disk. For now, think of slices as partitions.
It isn’t entirely accurate, but it is the concept we want to work with here.

The first thing we can try is to create a ZFS pool; if we were using entire disks,
we could think of the pool as a volume of disks. If we were to add RAID to the
mix, you would then be able to remove a disk from the volume, if it failed, and
replace it with a spare. The file system would then rebuild the missing data on
that new disk.

For right now, we want to construct a pool of storage that is larger than any
single available unit. Perhaps we need some scratch space for a computational
job.

zpool create zoo c0d1s0 c0d1s1

zpool list
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
Zoo 136G 575K 136G 0% ONLINE -

So the system has a 135GB pool to use for storage. What this means is that
the data can span the two slices. With this configuration, there is no
redundancy.

We could instead have created a mirrored pool—one that halves your
available storage but keeps an exact copy of the contents. Under this
model, if one side becomes corrupt, you can break the mirror and activate
the other side. With normal RAID configurations, you can survive a single
disk failure. Mirroring allows you to survive multiple disk failures on one
of the sides.

zpool destroy zoo
zpool create zoo mirror c0d1s0 c0d1s1

zpool list
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
Z00 67.56G 575K 675G 0% ONLINE -

Note that the mirror does indeed halve the storage. Also, we lost some
space for ZFS overhead. Perhaps we want to add some additional storage:

zpool add zoo c0d1s2 c0d1s3

invalid vdev specification

use '-f’ to override the following errors:
/dev/dsk/c0d1s2 overlaps with /dev/dsk/c0d1s0
zpool add zoo mirror cOd1s3 c0d1s4

invalid vdev specification

use '-f’ to override the following errors:
/dev/dsk/c0d1s4 contains a ufs filesystem.
/dev/dsk/c0d1s4 overlaps with /dev/dsk/c0d1s5

The zpool command is keeping me from shooting myself in the foot. Slice
2 should never be used, and slice 4 earlier had a UFS file system. That
should be easy to fix, but 'm more concerned with the data that exist on
slice 5. Notice that it was just when I moved to ZFS that I found out about

;LOGIN: JUNE 2006

the overlap. I'm in the process of exploring how OpenSolaris DVDs are
made bootable, and /dev/dsk/cOd1s5 contains the contents of the x86
DVD—see http://www.kanigix.org for more details on this project. So if I
lose the data, I have it on DVD.

Now let’s make the new file system real and use it to save the data. We
have a ZFS pool, but now we need to create a file system on that pool and
allow it to be utilized. A good question is, Why take the extra step? Why
not make the pool the base unit? The reason is that we want to be able to
store multiple file systems in a pool. What if we want to clone a file sys-
tem? What if we want to take a snapshot of a file system? Taking this
design path from the start saves the pain of trying to retrofit this function-
ality later—say, when many customers have vital data to be protected dur-
ing an upgrade.

zfs create zoo/x86

#df -h | grep zoo

700 67G 99K 67G 1% /zoo
200/x86 67G 98K 67G 1% /200/x86

#Is -la /zoo

total 6

drwxr-xr-x 3 root Sys 3 Mar 19 23:16 .
drwxr-xr-x 42 root root 1024 Mar 19 23:08 ..
dr-xr-xr-x 3 root root 3 Mar 19 23:17 .zfs
drwxr-xr-x 2 root sys 2 Mar 19 23:16 x86

ZFS created the file system and mounted it for me. One of the ease-of-use
factors of ZFS is that it automates many of the manual steps used with cre-
ating other file systems and making them ready for use.

I can use cpio to safely copy the data over to the new file system:

chown tdh:staff /z00/x86

cd /kanigix/

find . -depth -print | cpio -pudm /zoo/x86
6608816 blocks

df -h /kanigix /zoo /z00/x86

Filesystem size used avail capacity Mounted on
/dev/dsk/cOd1s5 7.3G 3.1G 4.1G 44% /kanigix

Z00 67G 99K 64G 1% /zo00
z00/x86 67G 3.2G 64G 5% /200/x86

Notice that although /zoo and /z00/x86 appear to be different file systems,
they share the same storage.

We copied the data over because we need to recreate the slice on which it
resided—slices 4 and 5 shared a block. We now need to fix the two slices

(remembering to comment out the entry in /etc/vistab). After using format
(and the subcommand of partition), these slices now look like this:

4 stand wm 26634-35510 68.00GB (8877/0/0) 142609005
5 stand wm 35511-36476 7.40GB (966/0/0) 15518790

Although I modified slice 5, I did not do so for slice 4. zpool will still think
there is a valid UFS file system on that slice, so we need to force it to use
that slice:

zpool add -f zoo mirror cOd1s3 c0d1s4

zpool list

NAME SIZE USED AVAIL CAP HEALTH ALTROOT
Z00 135G 3.21G 132G 2% ONLINE -

df -h /zoo /z00/x86

INTRODUCTION TO ZFS

23

24

;LOGIN: VOL. 31, NO. 3

Filesystem size used avail capacity Mounted on
Z00 134G 99K 131G 1% /zoo
Z00/x86 134G 3.2G 131G 3% /200/x86

We are now using about 268GB of raw disk space to provide a mirrored
pool. Again, by using a single disk, the mirroring will only provide mini-
mal benefit. Conceivably, someone could corrupt the slices with the format
command—but we don’t expect that. But as a cheap tour of the ZFS fea-
ture set, this setup works.

A common ZFS task is to create NFS exported home directories with a
quota. We use inheritance to say that any file systems created inside
/export/zfs are to exported via NFS, are to be compressed, and will have
a 10GB quota. Note that we are creating file systems within other file sys-
tems. We are setting defaults, which can be overridden at any time.

zfs create zoo/home

zfs set mountpoint=/export/zfs zoo/home
zfs set sharenfs=on zoo/home

zfs set compression=on zoo/home

zfs set quota=10G zoo/home

zfs create zoo/home/nfsv2

zfs create zoo/home/nfsv3

zfs create zoo/home/nfsv4

zfs list

NAME USED AVAIL REFER MOUNTPOINT
700 321G 131G 99.5K /zoo
zoo/home 395K 10.0G 99.5K /export/zfs

zoo/home/nfsv2 98.5K 10.0G 98.5K /export/zfs/nfsv2
zoo/home/nfsv3 98.5K 10.0G 98.5K /export/zfs/nfsv3
zoo/home/nfsv4 98.5K 10.0G 98.5K /export/zfs/nfsv4
z00/x86 321G 131G 3.21G /zo0/x86

One thing to note here is that zoo/x86 is only available as /z00/x86. Since
it is not under zoo/home, the defaults we provided do not apply. Also note
that it is not exported. Finally, if we do go to /zoo, we will not see “home.”

And we check that the home directories are exported on the box wont:

[tdh@adept ~]> showmount -e wont
Export list for wont:
/export/zfs (everyone)
/export/zfs/nfsv2 (everyone)
/export/zfs/nfsv3 (everyone)
/export/zfs/nfsv4 (everyone)
By the way, I never enabled the NFS server on wont. I know how to do it,
but I did not have to do anything, since ZFS did it for me. Note that I am
responsible for creating user accounts and changing ownership of the root
of the file systems.

A cautionary note here is that the quotas are on the file system and not per
user. ZFS does a lot for you behind the scenes, but it doesn’t know that
these are user accounts we are creating. So if the user nfsv2 were to copy
files under the /export/zfs/nfsv3 file system, the charge would be against
the file system and not against either of the two user accounts.

useradd -m -u 1094 -g 100 -¢ “Mr. NFSv2" -d /export/zfs/nfsv2 nfsv2
chown nfsv2:100 /export/zfs/nfsv2

Is -al /export/zfs

total 10

;LOGIN: JUNE 2006

drwxr-xr-x 5root sys 5 Mar 20 00:33 .

drwxr-xr-x 4 root sys 512 Mar 20 00:31 ..
dr-xr-xr-x 3 root root 3 Mar 20 00:40 .zfs
drwxr-xr-x 2 nfsv2 protos 2 Mar 20 00:33 nfsv2
drwxr-xr-x 2 nfsv3 protos 2 Mar 20 00:33 nfsv3
drwxr-xr-x 2 nfsv4d protos 2 Mar 20 00:33 nfsv4

We can test snapshots to see whether we can safeguard our data, in this
case a copy of this article. When you take a snapshot of a file system, you
are basically telling the OS that if the contents are changed, keep a copy of
the old contents. This copy stays until the snapshot is deleted.

There are different ways to achieve this, but a common approach employs
copy-on-write. Initially the two file systems (the original and the copy)
point to the same inodes and blocks. The savings here is that the snapshot
consumes minimal storage. We can see that here when we create the snap-
shot:

zfs snapshot zoo/home/nfsv4@monday

zfs list

NAME USED AVAIL REFER MOUNTPOINT
Z00 321G 131G 99.5K /zoo

zoo/home 404K 10.0G 100K /export/zfs
zoo/home/nfsv2 98.5K 10.0G 98.5K /export/zfs/nfsv2
zoo/home/nfsv3 98.5K 10.0G 98.5K /export/zfs/nfsv3
zoo/home/nfsva 108K 10.0G 108K /export/zfs/nfsva
zoo/home/nfsv4@monday 0 - 107K -

z00/x86 321G 131G 3.21G /zoo/x86

The accounting shows that only zoo/home/nfsv4 has any storage. When
the contents are changed, the original blocks are weaved into the snapshot
space and the new ones are created inside the live file system. We can see
that when we delete the file:

> s -la

total 23

drwxr-xr-x 2 nfsv4 protos 4 Mar 20 01:38

drwxr-xr-x 5 root sys 5 Mar 20 00:33 .
dr-xr-xr-x 3 root root 3 Mar 20 01:43 zfs
-TW-T--T-- 1 nfsv4d protos 0 Mar 20 01:04 it
-TW-T--T-- 1 nfsv4d protos 11808 Mar 20 01:38 zfs.txt
> rm zfs.txt

> Is -la

total 5

drwxr-xr-x 2 nfsv4 protos 3 Mar 20 01:43

drwxr-xr-x 5 root sys 5 Mar 20 00:33 .
dr-xr-xr-x 3 root root 3 Mar 20 01:43 zfs
-TW-T--T-- 1 nfsv4d protos 0 Mar 20 01:04 it

> zfs list | grep nfsv4

zoo/home/nfsv4 206K 10.0G 98.5K /export/zfs/nfsv4
zoo/home/nfsv4@monday 107K - 108K -

The storage has now transferred over to the snapshot. Also, the snapshot
storage is coming from the containing file system. Note how the other
numbers (USED and REFER) increased.

We can recover either the entire snapshot or just the file. To get the file
back:

> Is -la .zfs/snapshot/monday/
total 21

INTRODUCTION TO ZFS

25

26

;LOGIN: VOL. 31, NO. 3

drwxr-xr-x 2 nfsv4 protos 4 Mar 20 01:38 .

dr-xr-xr-x 3 root root 3 Mar 20 01:43 ..

-TW-T---- 1 nfsv4d protos 0 Mar 20 01:04 it

-TW-T---- 1 nfsv4d protos 11808 Mar 20 01:38 zfs.txt
> c¢p .zfs/snapshot/monday/zfs.txt .

> Is -la

total 6

drwxr-xr-x 2 nfsv4 protos 4 Mar 20 01:44 .
drwxr-xr-x 5root sys 5 Mar 20 00:33 ..

dr-xr-xr-x 3 root root 3 Mar 20 01:44 .zfs
-TW-T---- 1 nfsv4d protos 0 Mar 20 01:04 it

-TW-I---- 1 nfsv4 protos 11808 Mar 20 01:44 zfs.txt

At first the snapshot consumed no space, but as we caused it to deviate
from the original, it was forced to keep the content.

> zfs list | grep monday
zoo/home/nfsvd@monday 106K - 107K -

As we change the copy in the live file system, we can see that the two files
differ:

> diff zfs.txt .zfs/snapshot/monday/zfs.txt | wc -l
55

As alluded to earlier, we could restore the entire snapshot. Perhaps an
errant script did an rm -rf or a virus corrupted everything. With our exam-

ple:

zfs rollback zoo/home/nfsv4@monday

zfs list | grep nfsv4

zoo/home/nfsv4 108K 10.0G 108K /export/zfs/nfsv4
zoo/home/nfsv4@monday 0 - 108K -

I have tried to provide a taste of what ZFS can do for you and how you do
not need to spend a lot of money on disks to take it for a spin. I did not
explore all of the features—for example, creating a RAID pool, backing up
a snapshot to tape, or cloning a file system. I showed perhaps the most
common example, creating user accounts, and while I could have picked
something different, for example, staging areas for external Web servers, 1
picked it for a reason.

When 1 taught undergraduate CS courses, I would have loved the ability to
couple ZFS with Zones. Imagine that each student or group has its own
virtual server and its own file system. One student cannot inadvertently
rob the rest of the use of the machine and students cannot go look at each
other’s source code. They cannot complain that they accidentally deleted
their files (i.e., a snapshot will keep that dog away from their homework).
Also, if the due time is 5 p.m., just take a snapshot of the file systems.
There is no need to worry about some industrious student changing the
timestamps on the files.

