
60 ; L O G I N : V O L . 3 1 , N O . 2

D A V I D B L A N K - E D E L M A N

practical Perl tools:
programming,
ho hum
David N. Blank-Edelman is the director of technology
at the Northeastern University College of Computer
and Information Science and the author of Perl for
System Administration (O’Reilly). He has spent the
past 20 years as a system/network administrator in
large multi-platform environments, including
Brandeis University, Cambridge Technology Group,
and the MIT Media Laboratory. He was the chair of
the LISA 2005 conference and is an Invited Talks chair
for the upcoming LISA ’06.

dnb@pobox.com

W E L C O M E B A C K T O T H I S L I T T L E P E R L
column. This time the official ;login: theme
is “Programming.” Given the subject of the
column, that theme is just a walk in the
park for this humble columnist. I could sim-
ply lean back in my chair, put my boots up
on the desk, tilt my hat at a rakish angle,
stick a stalk of wheat between my teeth,
and say, “Ah yup. Perl’s a programming lan-
guage all right,”1 and I would have done my
part to keep this issue on topic.

But for you, I’ll work a little harder. Let’s take a
look at three programming practices that have
cropped up in the Perl world.

Practice #1: Test-First Programming

This first practice isn’t actually Perl-specific at
all, but we’ll look at how it easily can be imple-
mented using Perl. It’s not necessarily new either,
but the notion has caught on with some of the
most respected Perl luminaries and so is receiving
more lip service these days than ever before. Plus,
this was not something I was taught back when I
was a CS major in college (back when you had to
learn to whittle your own Turing machine), so it
may be new to you.

Simply put, when creating anything greater than a
trivial program you need to first write a set of test
cases the code is expected to pass. These are writ-
ten before you write a lick of the actual code. This
is the reverse of the standard practice of writing
the code and later figuring out how to test it.

This ordering may seem strange, because at first
the test cases should completely and unequivocal-
ly fail. Since the real code doesn’t exist yet (you
are just calling stub code at this point), this is to
be expected, because there isn’t really anything to
test. As more and more of the real code is written,
ideally more and more of your test cases should
begin to pass.

So why write a bunch of test cases that start out
failing like this? Perhaps the largest win is that it
forces you to think. You are forced to form a clear
idea of expected input, output, and (ideally) the
possible error-handling the program will exhibit
once fully written. This pre-programming ponder-
ing can often be pretty difficult, especially for
those programmers who like to wander towards
their goal, making stuff up as they go along. The

1. Reprising my pivotal, but deleted scene from Broke-
back Mountain. Look for it in the programming part of
the special features when the collector set comes out on
DVD.

; LO G I N : A P R I L 2 0 0 6 P R AC TI C A L P E R L TO O LS : P RO G R A M M I N G , H O H U M 61

added discipline may sting a little, but you will find the results are better
in the end.

There are other side benefits to this approach as well. It is not uncommon
during development to fix one bug and unwittingly introduce one or more
new bugs in the process. With test-first development, if your test code is
good you should notice those new bugs the very next time you run the
tests. This makes debugging at any point easier because it becomes possi-
ble to discount many other possible contextual problems when other sec-
tions of the code are tested to be known-good.

So now that you are beginning to get religion, let’s see how this works in
Perl. To Perl’s credit, the idea of test cases/code has been present in the
community for a very long time. The classic module installation recipe of:

perl Makefile.pl
make
make test
make install

or the increasingly common:

perl Build.pl
./Build # or just Build (for win32)
./Build test # or just Build test (for win32)
./Build install # or just Build install (for win32)

both imply that there are tests written that should pass before an
installation.

There’s a whole good book2 on writing test code with and for Perl, by Ian
Langworth and chromatic, called Perl Testing: A Developer’s Notebook
(O’Reilly), so I won’t go into any sort of depth on the subject. We’ll just get
a quick taste of the process and if it interests you, you can pursue more
resources online or buy this book.

There are two core concepts:

1. Find ways to encapsulate the question, “If I give this piece of code
a specific input (or force a specific error), does it produce the specific
result I expect?” If it does, test succeeds; if it doesn’t, test fails.

2. Report that success or failure in a consistent manner so testing
code can consume the answers and produce an aggregate report. This
reporting format is called the TAP (Test Anything Protocol) and is
documented in Perl’s Test::Harness::TAP documentation.

See Perldoc’s Test::Tutorial in the Test::Simple package as a first step toward
writing tests. Here’s an utterly trivial example, just so you can see the bare-
bones ideas made real:

use Scalar::Util (‘looks_like_number’);
use Test::Simple tests => 4;

adds 2 to argument and return result (or undef if arg not numeric)
sub AddTwo {

my $arg = shift;
if (! looks_like_number $arg) { return undef; }
return ($arg + 2);

}

ok (AddTwo(2) == 4, ‘testing simple addition’);
ok (AddTwo(AddTwo(2)) == 6, ‘testing recursive call’);
ok (AddTwo(‘zoinks’) eq undef, ‘testing non-numeric call’);
ok (AddTwo(AddTwo(‘zoinks’)) eq ‘bogus test’,

‘testing recursive non-numeric call’);

2. Bias alert: one of the co-authors of this book
is a student of mine here at Northeastern Uni-
versity. Bias aside, it is a really good book.

62 ; L O G I N : V O L . 3 1 , N O . 2

Running the code, we get very pretty output that describes the number of
tests run and their result (including the last, broken test):

1..3
ok 1 - testing simple addition
ok 2 - testing recursive call
ok 3 - testing non-numeric call
not ok 4 - testing recursive non-numeric call
Failed test ‘testing recursive non-numeric call’
in untitled 1.pl at line 16.
Looks like you failed 1 test of 4.

Test::Simple makes it easy to write quick tests like this. It provides an ok()
routine which essentially performs an if-then-else comparison along the
lines of “if (your test here) { print “ok” } else { print “not ok” }”; that sim-
ple construct is at the heart of most of the more complex testing that can
take place. Don’t be fooled by how trivial the ok() construct looks. The
complexity of the code being called in the ok() is in your hands. If you
want to write something that takes eons to compute like:

ok(compute_meaning($life) == 42, ‘life, the universe, and everything’);

you can do that.

There are a whole slew of other modules that allow for more advanced
tests with more sophisticated comparisons (e.g., Test::Deep will compare
two entire data structures), data sources (e.g., Test::DatabaseRow can
access a SQL database), control flow items (e.g., Test::Exception for testing
exception-based code), and other program components (e.g., Test::Pod to
test the code’s documentation).

Once you’ve written a gaggle of individual tests you’ll probably want to
bring something like Test::Harness into the picture to allow you to run all
of the tests and report back the aggregate results. You’ve probably used
Test::Harness before without even knowing it. It is the module called by
most modules during the “make test” or “build test” install phase.

If your test scripts output the right TAP protocol, using Test::Harness is
super-simple:

use Test::Harness;

my @test_scripts = qw(test1.pl test2.pl test3.pl);

runtests(@test_scripts);

The three scripts will be run and the results reported at the end. Test::Harness
also provides a prove command which can be used to run a set of tests from
the command line. See Perl Testing for more details on all of these test-related
ideas.

Practice #2: Write the Code in Another Language

Oh, the heresy, the sacrilege, the gumption! I hate to be the one to intro-
duce a little existential truth into this issue of ;login: (usually I’d save that
for the philosophy-themed issue), but sometimes you need to program in
another language besides Perl to get the job done. Perhaps the vendor of a
product you are using only provides C libraries and header files or you’ve
found a really cool Python library that doesn’t have a Perl equivalent. The
bad news is that sometimes these situations occur; the good news is that
you don’t necessarily have to write your entire program in that foreign lan-
guage. You may be able to create a tiny island of strange code surrounded
by a sea of Perl.

; LO G I N : A P R I L 2 0 0 6 P R AC TI C A L P E R L TO O LS : P RO G R A M M I N G , H O H U M 63

One easy way to include foreign languages within a Perl program is
through the Inline family of modules. Here’s a quick example of embed-
ding Python in Perl code (oh, the impiety!) taken from the man page for
Inline::Python:

print “9 + 16 = “, add(9, 16), “\n”;
print “9 - 16 = “, subtract(9, 16), “\n”;

use Inline Python => <<‘END_OF_PYTHON_CODE’;
def add(x,y):

return x + y

def subtract(x,y):
return x - y

END_OF_PYTHON_CODE

Inline modules exist for a whole bunch of the popular and more obscure
programming languages. There’s a good chance you’ll be able to find what
you need to embed that language into your Perl code.

Another potentially useful method of programming in another language
involves a language that doesn’t really exist yet (certainly not in a finished
form): Perl 6. There are two ways to begin enjoying some of the nifty and
mind-blowing features of Perl 6:

1. PUGS (http://www.pugscode.org)—I don’t think I’d use this for
any serious tasks yet, but if you want to play around with Perl 6 well
ahead of the actual language being ready, you can use a project start-
ed by the worship-worthy Autrijus Tang. Tang and some other pro-
grammers have basically been working to implement the Perl 6 lan-
guage as specified to date using the functional programming lan-
guage Haskell. This lets people kick the tires on the language design
by actually using it. See the URL above for more details.

2. Damian Conway had a similar notion about using implementation
to test the design, so he led the charge to create Perl 5 modules that
offer test implementations for various pieces of the Perl 6 language
design. He and a group of other authors have been releasing modules
into the Perl6:: namespace on CPAN for quite a while.

For example, if you’d like to use the new Perl 6 slurp command to read the
contents of a file into a variable, you could

use Perl6:: Slurp;

$data = slurp ‘file’;

Probably the most useful of these modules is the Perl6::Form module,
which allows you to use the Perl 6 replacement for Perl 4/5’s sub-optimal
format built-ins. See the Perl6:: modules on CPAN for the sorts of Perl 6
features available for use in your Perl 5 programs today.

Practice #3: Add a Little Magic to Your Programs

For our final topic we’re going to look at a couple of ways to get work
done via “magic.” Since we just mentioned Damian Conway in the last sec-
tion, let’s show another one of his creations: Smart::Comments. With this
module the normally passive comments in a program’s listing can spring to
life and do interesting things. For instance, if you wrote code that looked
like this:

64 ; L O G I N : V O L . 3 1 , N O . 2

use Smart::Comments;

for $i (0 .. 100) { ### Cogitating |===[%] |
think_about($i);

}

sub think_about {
sleep 1; # deep ponder

}

the program would print a cool animated progress bar that would look like
this at various stages in the program run:

Cogitating |[2%] |
Cogitating |====[37%] | (about 1 minute remaining)
Cogitating |=============[71%] | (about 30 seconds remaining)
Cogitating |==========================|

We didn’t have to write all of the progress bar code (or even the part that
attempts to provide an estimate for how long the program will continue to
run), all we had to do was add the comment ### Cogitating |===[%] | next
to the for() loop. This module can do other spiffy things that help with
debugging your code; be sure to consult its documentation for details.

The last piece of magic I want to bring to your attention is the IO::All
module by Brian Ingerson. This module is so magical that it is hard to
describe. Here’s what the docs have to say:

IO::All combines all of the best Perl IO modules into a single Spiffy
object-oriented interface to greatly simplify your everyday Perl IO
idioms. It exports a single function called io, which returns a new
IO::All object. And that object can do it all!

And when it says “can do it all!” it isn’t kidding. Here are some examples
to give you a flavor of its capabilities:

io(‘filename’) > $data; # slurps contents of filename into $data
$data = io(‘filename’)->slurp; # does the same thing

$data >> io(‘filename’); # appends contents of $data to filename
io(‘filename’)->append($data); # does the same thing

io(‘file1’) > io(‘file2’); # copies file1 to file2

$line = io(‘filename’)->getline; # read a line from filename
io(‘filename’)->println($line); # write a line to filename

$io = io ‘filename’;
$line = $io->[@$io /2]; # read a line from the middle of filename

@dir = io(‘dirname/’)->all; # list items found in dirname
@dir = io(‘dirname/’)->all(0); # recurse all the way down into dirname

From these examples you can see that IO::All makes it easy to read and
write to files and operate on directories with a minimum of code. It has
both a OO-like interface (e.g. ->slurp) and a set of overloaded operators
(e.g., >) for these tasks. Many of these methods can be chained together
for even quicker results.

But that’s only a small part of the magic. Let’s see more of the IO::All pixie
dust:

; LO G I N : A P R I L 2 0 0 6 P R AC TI C A L P E R L TO O LS : P RO G R A M M I N G , H O H U M 65

io(‘filename’)->lock; # lock filename
io(‘filename’)->unlock; # unlock filename (could also ->close())

io(‘filename’)->{lulu} = 42; # write to DBM database called filename
print io(‘filename’)->{tubby}; # read from that database

$data < io->http(‘usenix.org’); # read a web page into $data
io(‘filename’) > io->(‘ftp://hostname’) # write filename to ftp server

$socket = io(‘:80’)->fork->accept; # listen on a socket
$socket->print(“hi there\n”); # print to the socket
$socket->close; # close the connection

Easy file locking, database access, and a dash of network operations. Pretty
spiffy indeed.

And with that, I’m afraid we have to bring this issue’s column to a close.
Take care, and I’ll see you next time.

RENEW ONLINE TODAY!
Renewing or updating your USENIX
membership has never been easier!

You will receive your renewal notice via email and one click
will take you to an auto-filled renewal form.

Or visit
http://www.usenix.org/membership/

and click on the appropriate links.
Your renewal will be processed instantly.

Your active membership allows the Association to fulfill its mission.
Thank you for your continued support!

