CHAOS GOLUBITSKY

simple software
flow analysis
using GNU cflow

Chaos Golubitsky is a software security analyst. She
has a BA from Swarthmore College, a background in
UNIX system administration, and an MS in informa-
tion security.

chaos@glassonion.org

A CALL GRAPH IS A TEXT-BASED OR
graphical diagram showing which func-
tions inside a code base invoke which other
functions. Accurate call graphs aid many
debugging and software analysis tasks. For
example, when viewing a code base for the
first time, an examiner can tell from a call
graph whether the code structure is flat or
modular, and which functions are the
busiest. Later in analysis, a call graph can
be used to answer specific questions, such
as which other functions within the code
invoke a specific function of interest.

GNU cflow is a new tool which can be used to
quickly and easily generate flexible and accurate
text-based call graphs of C programs. In this arti-
cle I will introduce cflow, with an eye towards
describing how it can be used to easily create
accurate call graphs.

History and Motivation

The cflow tool was initially developed in the
1990s, and the older version is referred to as
POSIX cflow. I first encountered POSIX cflow
while performing a vulnerability analysis of open
source software [1], for which I needed a simple
source of data about reachable functions within a
code base. The POSIX specification for the cflow
tool [2] requires that the tool be capable of
generating forward and reverse flow graphs up to
a specified depth, and that the user be able to
specify classes of symbols, such as static functions
or typedefs, which should be printed or omitted.
The POSIX tool provides this relatively limited
functionality, and is no longer being actively
maintained.

The cflow project was restarted last year due to
interest in a simple tool which could generate call
graphs, and the first alpha release of GNU cflow
[3] occurred in April 2005. The GNU version of
the tool is significantly more flexible than the
POSIX specification requires, and is being actively
maintained and improved.

Basic

Functionality

In its simplest use, cflow is called with the name
of one or more C source files as arguments. Cflow
uses a custom C lexical analyzer to interpret the

;LOGIN: APRIL 2006 SIMPLE SOFTWARE FLOW ANALYSIS USING GNU CFLOW

37

38

;LOGIN: VOL. 31, NO. 2

source code, and prints a call graph of the code, starting with the main()
function.

Cflow’s basic functionality can be demonstrated using a classic example:
#include <stdio.h>
void howdy();

int main() {
howdy();
exit(0);
}
void howdy() {
printf(“hi, world\n");
}

If this example is stored as hello.c, then running cflow hello.c will produce:

main() <int main () at hello.c:5>:
howdy() <void howdy () at hello.c:9>:
printf()
exit()

GNU cflow’s main strength is that it can easily be configured to present call
data in useful ways. Cflow’s behavior can be modified using two major
approaches. First, cflow can be invoked with options which present the
call graph data in various ways. These options can be used to quickly find
whatever data is needed to answer a particular question, or to format the
call data for processing via script or some other external program. Second,
cflow can be called with options which modify how it processes the source
code and, therefore, what information will be contained in its results. I will
discuss each of these in turn.

Customizing Cflow’s Output Format

Cflow has two major output modes. In tree mode, which is the default,
cflow prints functions one per line, using indentation to indicate call rela-
tionships. In cross-reference mode, cflow prints a two-column list contain-
ing one line for each caller/callee pair within the code base.

CROSS-REFERENCE MODE

Cross-reference mode, which is invoked using the -x flag, is the simpler of
the modes, and is not very customizable. In addition to cross-references, it
includes a special line for the beginning of each function definition in a
file. Therefore, this mode can also be used to quickly obtain a list of the
locations of all function definitions within a given file:

cflow -x filename.c | awk '$2=="*" {print $1 "“\t\t" $3}'

TREE MODE

Tree mode is the default and is much more flexible. When invoked without
arguments, cflow looks for a function called main(), and produces an
indented call graph of that function and all functions it calls. The -m flag
tells cflow to begin the tree using a different function. If the specified func-
tion is not found, cflow will print a tree for every function in the examined
file or files. Reverse mode (-r) prints a reverse call tree, and always prints
information about every function in the file.

;LOGIN: APRIL 2006

Several flags are available which affect how much information, beyond
function names, is included in cflow’s output. These include -n (number
each line of output), - (label each line of output with the call depth of

the function listed on that line), —omit-arguments and --omit-symbol-names
(shorten the information printed about each function declaration). The
~level-indent flag can be used to gain fine-grained control over the spacing
and layout of the functions, but -T provides a good set of defaults which
give reasonable visual call tree output. Further, the argument —format=posix
can be used to obtain output similar (though not identical) to that pro-
duced by the older POSIX cflow program.

In tree mode (either standard or reverse), the -d N argument tells cflow to
report only N levels of output. This option can be used to quickly print a

list of all functions which are called by any function within a file of inter-
est. (Note that this is most easily done in reverse tree mode, since forward
tree mode examines only the main() function by default):

cflow -r -d 1 filename.c

I typically format cflow output for automated processing by custom scripts.
However, cflow output can also be used as input for other graphing or pro-
cessing software. A couple of examples are worth mentioning here. Cflow
can be used in combination with the tool cflow2vcg to produce visual call
graphs under the VCG graphing package [4]. Additionally, Emacs users
may be interested in the emacs cflow-mode module which is packaged
with cflow [5].

Customizing Cflow’s Source Code Analysis

Cflow implements its own lexical analyzer for the C language, and there
are several ways to control its behavior. In this section I will discuss some
options which affect how cflow finds functions and definitions within C
source code.

At the simplest level, the -i flag can be used to define subsets of symbols
which should or should not be reported, including static symbols, type-
defs, symbols whose names begin with underscores, and external symbols.

PREPROCESSOR OPTIONS

GNU cflow does not use a preprocessor by default. When invoked with the
argument —-cpp, cflow preprocesses the code using the cpp executable or a
user-specified preprocessor. Using —~cpp increases the accuracy of cflow’s
output, but has some visible effects. Most notably, functions which are
implemented as #define statements are silently unrolled. This can occa-
sionally cause confusing output: for instance, getc() is often implemented
by operating systems as a wrapper for another function. It may be confus-
ing to find __srget() in cflow’s output with no indication of what invoked
it. The older POSIX cflow always used a preprocessor, and preprocessor
mode is likely to be desirable for most analysis, but it can sometimes be
helpful to produce GNU cflow output without a preprocessor.

When invoked with —cpp, GNU cflow searches for function definitions in
system header files. It is possible to tweak the set of directories which
cflow should search for function definitions using the - (include dir) and
-U (undefine) flags. (These flags imply —cpp.) These flags are needed if we
wish to use cflow to parse complex source code accurately.

SIMPLE SOFTWARE FLOW ANALYSIS USING GNU CFLOW 39

EMBEDDING CFLOW IN MAKEFILES

For very small code bases, or to answer simple or file-specific questions, it
can be sufficient to manually run cflow on a small number of C source
files. However, in order for cflow to provide accurate results for complex
code bases, it must process the code the same way the makefile processes
it, to ensure that the function relations cflow finds are the same as those
compiled into the software. Some more complex source analysis tools (e.g.,
the OCaml-based C representation language Cil [6]) compile the code as a
side effect of analyzing it, and can therefore be trivially embedded in make-
files as compiler replacements. Since cflow does not do this, it is necessary
to manually insert cflow-specific rules into the makefile. Makefile editing
requires some effort, but it is often worthwhile due to the increased accu-
racy.

The general idea is to create a separate make target named, for instance,
program.cflow, and configure this target to run cflow using:

= The compiler definitions used for this code base
= The include directives used for this code base

= The preprocessor flags used for this code base

= The file names compiled by this code base

It should be possible to use makefile variables to obtain the correct values
for each of these items. In addition, the cflow -o flag is used to save the
output to a file, and any desired cflow-specific flags are also set. Here is an
example of this configuration which is appropriate for inclusion in a GNU-
style Makefile.in file [7]:

program_CFLOW_INPUT = $(program_OBJECTS:.@OBJEXT@=.c)
CFLOW_FLAGS = -irs —brief

program.cflow: $(program_CFLOW_INPUT) Makefile
cflow -0$@ $(CFLOW_FLAGS) $(DEFS) $(DEFAULT_INCLUDES) \
$(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \
$(program_CFLOW_INPUT)

With this configuration, the invocation make program.cflow should suffice
to run cflow on the code base as it will be compiled. The CFLOW_FLAGS
variable can be changed in order to run cflow with a different set of
options.

Summary

In software analysis, it is often useful to be able to identify caller/callee
relationships within a code base, and to display such relationships in
usable formats. GNU cflow is a simple tool which performs this function
accurately. Cflow builds on the decade-old tool of the same name by pro-
viding flexible options which significantly increase cflow’s utility and ease
of use. GNU cflow is recommended as a first-line tool for answering ques-
tions about software call flow.

40 ;LOGIN: VOL. 31, NO. 2

REFERENCES

[1] http://www.usenix.org/events/lisa05/tech/golubitsky html

[2] http://www.opengroup.org/onlinepubs/009695399/utilities/cflow.html
[3] http://www.gnu.org/software/cflow/

[4] http://www.gnu.org/software/cflow/manual/html_node
/Output-Formats.html

[5] http://www.gnu.org/software/cflow/manual/html_node/Emacs.html
[6] http://manju.cs.berkeley.edu/cil/

[7] http://www.gnu.org/software/cflow/manual/html_node/Makefiles.html

)MINISTRATION CONFERENCE
December 3-8 Washington, D.C.

The annual LISA conference is the
D u I. e I meeting place of choice for system,
® network, database, storage, security,
and all other computer-related adminis-
trators. Join us in Washington, D.C.,
December 3-8, 2006, for the most
in-depth, real-world system administra-

tion training and information available.

;LOGIN: APRIL 2006 SIMPLE SOFTWARE FLOW ANALYSIS USING GNU CFLOW

41

