BRIAN KERNIGHAN

code testing and
its role in teaching

Brian Kernighan was in the Computing Science
Research Center at Bell Labs and now teaches in
the CS department at Princeton, where he also
writes programs and occasional books. The latter
are better than the former, and certainly need less
maintenance.

bwk@cs.princeton.edu

;LOGIN: APRIL 2006

FOR THE PAST SIX OR SEVEN YEARS

| have been teaching a course called
“Advanced Programming Techniques” [7] to
(mostly) sophomore and junior computer
science majors. The course covers an eclec-
tic mix of languages, tools, and techniques,
with regular coding assignments and final
group projects.

Dijkstra famously remarked that “Program testing
can be quite effective for showing the presence of
bugs, but is hopelessly inadequate for showing
their absence.” Nevertheless, programmers who
think about testing are more likely to write cor-
rect code in the first place. Thus I try to encour-
age the students to do intensive testing of their
code, both in one-week assignments in the first
half of the semester and as part of their eight-
week projects.

My personal interest in testing comes from main-
taining a widely used version of AWK for the past
25 years. In an attempt to keep the program
working, and to maintain my sanity as bugs are
fixed and the language slowly evolves, I have cre-
ated somewhat over 1000 tests, which can be run
automatically by a single command. Whenever I
make a change or fix a bug, the tests are run. Over
the years this has caught most careless mistakes—
once fixed, things tend to stay fixed and new code
rarely breaks old code.

The approach is a good way to think about testing
small programs, and many of the techniques scale
up to larger programs. Furthermore, the topic is
good for teaching about other aspects of program-
ming, such as tools, specialized languages, script-
ing, performance, portability, standards, documen-
tation—you name it, it’s there somewhere. So I
find myself using this material in class in a variety
of ways, I think to the benefit of the students. And
when I describe it to friends who work in the real
world, they nod approvingly, since they want to
hire people who can write programs that work
and who understand something of how to pro-
duce software that others will use.

This report from the trenches focuses mainly on
testing, with some digressions on topics that have
led to useful class lessons. I am ignoring other
important issues, such as formal methods both for
writing correct programs and for validating them
after the fact. These are often of great value, but I
am reminded of Don Knuth’s apposite comment,
“Beware of bugs in the above code; I have only
proved it correct, not tried it.”

CODE TESTING AND ITS ROLE IN TEACHING

9

10

;LOGIN: VOL. 31, NO. 2

A Bit of History

Al Aho, Peter Weinberger, and I created AWK in 1977 [1]; around 1981 1
became the de facto owner and maintainer of the source code, a position
I still hold. The language is so small and simple that it remains a widely
used tool for data manipulation and analysis and for basic scripting,
though there are now many other scripting languages to choose from.
There are multiple implementations, of which GNU’s GAWK is the most
widely used, and there is a POSIX standard.

The language itself is small, and our implementation [6] reflects that. The
first version was about 3000 lines of C, Yacc, and Lex; today, it is about
6200 lines of C and Yacc, Lex having been dropped for reasons to be dis-
cussed later. The code is highly portable; it compiles without #ifdefs and
without change on most UNIX and Linux systems and on Windows and
Mac OS X. The language itself is stable; although there is always pressure
to add features, the purveyors of various implementations have taken a
hard line against most expansion. This limits the scope of AWK’s applica-
tion but simplifies life for everyone.

Test Cases

Because both language and implementation are small, the program is self-
contained, and there are multiple implementations, AWK is a good target
for thorough testing.

This section describes general classes of test cases. In the early days we
collected and invented test cases in an ad hoc way, but gradually we
became more systematic. Nevertheless, there is definitely a random flavor
to many of the tests. In total, there are nearly 7000 lines of tests, in more
than 350 files—there are more lines of tests than of source code. This
emphasis on testing is typical of software with stringent reliability require-
ments, which might well have 10 times as much test as code, but it is way
beyond what one encounters in a class. Merely citing the scale of testing
wakes up a class; it may help convince them that I am serious when I ask
them to include tests with their assignments.

One major test category probes language features in isolation: numeric and
string expressions, field splitting, input and output, built-in variables and
functions, control flow constructs, and so on. There are also a lot of repre-
sentative small programs, such as the very short programs in the first two
chapters of the AWK book. For example, the first test,

{ print }
prints each input line and thus copies input to output.

AWK was originally meant for programs like this, only a line or two long,
often composed at the command-line prompt. We were surprised when
people began creating larger programs, since some aspects of the imple-
mentation didn’t scale, and large AWK programs are prone to bugs. But
bigger complete programs like the chem preprocessor [5] make it possible
to test features working together rather than in isolation, so there are a
number of tests of this kind.

Some aspects of AWK are themselves almost complete languages—for
instance, regular expressions, substitution with sub and gsub, and expres-
sion evaluation. These can be tested by language-based approaches, as we
will see below.

;LOGIN: APRIL 2006

There are about 20 tests that exercise the most fundamental AWK actions:
input, field splitting, loops, regular expressions, etc., on large inputs.

The runtimes for old and new versions of the program are compared;
although real performance tuning is notoriously difficult, this provides

a rough check that no performance bug is inadvertently introduced.

Each time a bug is found, a new set of tests is created. These are tests that
should have been present; if they had been, they would have exposed the

bug. In general such tests are small, since they are derived from the small-
est programs that triggered the bug.

New tests are also added for new features or behaviors. AWK does not
change much, but features are added or revised occasionally. Each of these
is accompanied by a set of tests that attempt to verify that the feature
works properly. For example, the ability to set variables on the command
line was added and then refined as part of the POSIX standardization
process; there are now about 20 tests that exercise this single feature.

One of the most fruitful places to look for errors is at “boundary condi-
tions.” Instances include creating fields past the last one on an input line,
trying to set nominally read-only variables like NR or NE and so on. There
is also a group of stress tests: very large strings, very long lines, huge num-
bers of fields, and the like are all places where implementations might
break. In theory, there are no fixed size limits on anything of significance,
so such tests attempt to verify proper behavior when operating outside
normal ranges.

One useful technique is to move the boundaries closer, by setting internal
program limits to small values. For example, the initial size of the hash
table for associative arrays is one element; in this way all arrays are forced
to grow multiple times, thus exercising that part of the code. This same
approach is used for all growable structures, and it has been helpful in
finding problems; indeed, it just recently exposed a memory allocation fail-
ure on Linux that does not appear on Solaris.

One productive boundary condition test involved trying all AWK “pro-
grams” consisting of a single ASCII character, such as

awk @ (illegal) single-character program

Some of these are legal (letter, digit, comment, semicolon) and possibly
even meaningful (non-zero digit), but most are not. This exercise uncov-
ered two bugs in the lexical analyzer, a story to which we will return later.

Every command-line option is tested, and there are also tests that provoke
each error message except for those that “can’t happen.”

I have tried to create enough coverage tests that every statement of the
program will be executed at least once. (Coverage is measured with gcov,
which works with gcc.) This ideal is hard to achieve; the current set of
tests leaves about 240 lines uncovered, although about half of those are
impossible conditions or fatal error messages that report on running out of
memory.

I found one bug with coverage measurements while preparing this paper—
the nonstandard and undocumented option -safe that prevents AWK from
writing files and running processes was only partly implemented.

For all tests, the basic organization is to generate the correct answer some-
how—from some other version of AWK, by some other program, by copy-
ing it from some data source—then run the new version of AWK to pro-
duce its version of the answer, and then compare them. If the answers

CODE TESTING AND ITS ROLE IN TEACHING 1

12

;LOGIN: VOL. 31, NO. 2

differ, an error is reported. So each of the examples, such as { print } above,
is in a separate file and is tested by a shell loop like this:

for i
do
echo "$i:"
awk -f $i test.data >foo1 # old awk
a.out -f $i test.data >foo2 # new awk
if cmp -s foo1 foo2
then true
else echo "BAD: test $i failed”
fi
done

If all goes well, this prints just the file names. If something goes wrong,
however, there will be lines with the name of the offending file and the
string BAD that can be grepped for. There is even a bell character in the
actual implementation so errors also make a noise. If some careless change
breaks everything (not unheard of), running the tests causes continuous
beeping.

Test Data

The other side of the coin is the data used as input to test cases. Most test
data is straightforward: orderly realistic data such as real users use. Exam-
ples include the “countries” file from Chapter 2 of [1]; the password file
from a UNIX system; the output of commands such as who or Is -I; or big
text files such as the Bible, dictionaries, stock price listings, and Web logs.

Boundary-condition data is another category; this includes null inputs,
empty files, empty fields, files without newlines at the end or anywhere,
files with CRLF or CR only, etc.

High-volume input—big files, big strings, huge fields, huge numbers of
fields—all stress a program. Generating such inputs by a program is easi-
est, but sometimes they are better generated internally, as in this example
that creates million-character strings in an attempt to break sprintf:

echo 4000004 >foo1

awk

BEGIN {
x1 = sprintf(* %1000000s\n", “hello”)
x2 = sprintf(* %-1000000s\n", “world")
x3 = sprintf(* % 1000000.1000000s\n", “goodbye”)
x4 = sprintf(* %-1000000.1000000s\n", “everyone”)
print length(x1 x2 x3 x4)

} >foo2

cmp -s fool foo2 || echo '‘BAD: T.overflow huge sprintf’

(The very first bug in my record of bug fixes, in 1987, says that a long
string in printf causes a core dump.) Again, the error message identifies the
test file and the specific test within it.

Random input, usually generated by program, provides yet another kind of
stress data. A small AWK program generates files with lots of lines contain-
ing random numbers of fields of random contents; these can be used for a
variety of tests. Illegal input is also worth investigating. A standard exam-
ple is binary data, since AWK expects everything to be text; for example,
AWK survives these two tests:

awk -f awk “program” is raw binary
awk ‘{print}’ awk input data is raw binary

by producing a syntax error as expected for the first and by quietly stop-
ping after some early null byte in the input for the second. The program
generally seems robust against this kind of assault, though it is rash to
claim anything specific.

Test Mechanization

We want to automate testing as much as possible: let the machine do the
work. There are separate shell scripts for different types of tests, all run
from a single master script. In class, I describe the idea of running a lot of
tests, then type the command and talk through what is happening as the
test output scrolls by, a process that today takes two or three minutes
depending on the system. If nothing else, the students come away with a
sense of the number of tests and their nature.

Regression tests compare the output of the new version of the program to
the output of the old version on the same data. Comparing independent
implementations is similar to regression testing, except that we are com-
paring the output of two independent versions of the program. For AWK,
this is easy, since there are several others, notably GAWK.

Independent computation of the right answer is another valuable ap-
proach. A shell script writes the correct answer to a file, runs the test,
compares the results, and prints a message in case of error, as in the big-
string example above. As another illustration, this is one of the tests for
/O redirection:

awk ‘NR%2 == 1 { print >>"foo" }
NR%2 == 0 { print >"foo" }' /etc/passwd
cmp -s foo /etc/passwd || echo ‘BAD: T.redir (print > and >>"foo")’

This prints alternate input lines with the “>” and “>>" output operators;
the result at the end should be that the input file has been copied to the
output.

Although this kind of test is the most useful, since it is the most portable
and least dependent on other things, it is among the hardest to create.

Notice that these examples use shell scripts or a scripting language like
AWK itself to control tests, and they rely on 1/O redirection and UNIX
tools such as echo, grep, diff, cmp, sort, we. This teaches something about
UNIX itself, as well as reminding students of the value of small tools for
mechanizing tasks that might otherwise be done by hand.

Specialized Languages

The most interesting kind of test is the use of specialized languages to gen-
erate test cases and assess their results. A program can convert a compact
specification into a set of tests, each with its own data and correct answer,
and run them. Regular expressions and substitution commands are tested
this way. For regular expressions, an AWK program (naturally) converts a
sequence of lines like this:

;LOGIN: APRIL 2006 CODE TESTING AND ITS ROLE IN TEACHING 13

14

;LOGIN: VOL. 31, NO. 2

Na.$ ~ ax
aa
I~ xa

aaa

axy

wn

into a sequence of test cases, each invoking AWK to run the test and evalu-
ate the answer. In effect, this is a simple language for regular expression
tests:

na$ ~ ax the pattern "a.$ matches ax
aa and matches aa
I~ xa but does not match xa
aaa and does not match aaa

axy and does not match axy
" and does not match the empty string

A similar language describes tests for the sub and gsub commands. A third
language describes input and output relations for expressions. The test
expression is the rest of the line after the word “try,” followed by inputs
and correct outputs one per line; again, an AWK program generates and
runs the tests.

try {print ($1 ==1)? “yes": "no"}

1 yes
1.0 yes
1EQ yes
0.1E1 yes
10E-1 yes
01 yes
10 no
10E-2 no

There are about 300 regular expression tests, 130 substitution tests, and
100 expression tests in these three little languages; more are easily added.
These languages demonstrate the value of specialized notations, and show
how one can profitably separate data from control flow. In effect, we are
doing table-driven testing.

Of course, this assumes that there is a version of AWK sufficiently trusted
to create these tests; fortunately, that is so basic that problems would be
caught before it got this far. Alternatively, they could be written in another
language.

Another group of tests performs consistency checks. For example, to test
that NR properly gives the number of input records after all input has been
read:

{i++}# add 1 for each input line
END {if (i I= NR) print “BAD: inconsistent NR" }
Splitting an input line into fields should produce NF fields:

{if (split($0, x) = NF)
print “BAD: wrong field count, line “, NR
}

Deleting all elements of an array should leave no elements in the array:

BEGIN {
for (i = 0; i < 100000; i++) x[i] =i
for (i in x) delete xli]

;LOGIN: APRIL 2006

n=20
for (i in x) n++
if (n1=0)
print “BAD: delete count “ n “ should be 0"
1

Checking consistency is analogous to the use of assertions or pre- and
post-conditions in programming.

Advice

This section summarizes some of the lessons learned. Most of these are
obvious and every working programmer knows them, but students may
not have been exposed to them yet. Further advice may be found in
Chapter 6 of The Practice of Programming [3].

Mechanize. This is the most important lesson. The more automated your
testing process, the more likely that you will run it routinely and often.
And the more that tests and test data are generated automatically from
compact specifications, the easier it will be to extend them. For AWK, the
single command REGRESS runs all the tests. It produces several hundred
lines of output, but most consist just of file names that are printed as tests
progress. Having this large and easy-to-run set of tests has saved me from
much embarrassment. It’s all too easy to think that a change is benign
when, in fact, something has been broken. The test suite catches such
problems with high probability.

Watching test results scroll by obviously doesn’t work for large suites or
ones that run for a long time, so one would definitely modify this to auto-
mate reporting of errors if scaling up.

Make test output self-identifying. You have to know what tests ran and
especially which ones caused error messages, core dumps, etc.

Make sure you can reproduce a test that fails. Reset random number gen-
erators and files and anything else that might preserve state from one test
to the next. Each test should start with a clean slate.

Add a test for each bug. Better tests originally should have caught the bug.
At least this should prevent you from having to find this bug again.

Add tests for each new feature or change. A good time to figure out
whether a new feature or change works correctly is while it’s fresh; pre-
sumably there was some testing anyway, so make sure it's preserved.

Never throw away a test. A corollary to the previous point.

Make sure that your tester reports progress. Too much output is bad, but
there has to be some. The AWK tests report the name of each file that is
being tested; if something seems to be taking too long, this gives a clue
about where the problem is.

Watch out for things that break. Make the test framework robust against
the many things that can go wrong: infinite loops, tests that prompt for
user input then wait forever for a response, tests that print spurious out-
put, and tests that don't really distinguish success from failure.

Make your tests portable. Tests should run on more than one system; oth-
erwise, it’s too easy to miss errors in both your tests and your programs.
Shell commands, built-ins (or not) like echo, search paths for commands,
and the like are all potentially different on different machines; just because
something works one place is no guarantee that it will work elsewhere. 1

CODE TESTING AND ITS ROLE IN TEACHING 15

16

;LOGIN: VOL. 31, NO. 2

eventually wrote my own echo command, since the shell built-ins and
local versions were so variable.

A few years ago I moved the tests to Solaris from the SGI Irix system,
where they had lived happily for more than a decade. This was an embar-
rassing debacle, since lots of things failed. For instance, the tests used grep
-s to look for a pattern without producing any output; the -s option means
“silent,” i.e., status only. But that was true in 7th Edition UNIX, not on
other systems, where it often means “don’t complain about missing files.”
The -g of Linux means “quiet,” but it’s illegal on Solaris. printf on some sys-
tems prints -0 for some values of zero. And so on. It was a mess, and
although the situation is now better, it’s still not perfect.

A current instance of this problem arises from the utter incompatibility of
the time command on different UNIX systems. It might be in /bin or in
/usr/bin or be a shell built-in (in some shells), and its output format will
vary accordingly. And if it’s a built-in its output can’t be redirected! It’s
tough to find a path through this thicket; I eventually wrote my own
version of time.

It has also been harder than anticipated to use GAWK as a reference imple-
mentation; although the AWK language is ostensibly standardized, there
are enough dark corners—for instance, when does a change in a field-
splitting string take effect?>—that at least some tests just produce different
answers. The current test suite marks those as acceptable differences, but
this is not a good long-term solution.

Check your tests and scaffolding often. It’s easy to get into a rut and
assume that your tests are working because they produce the expected
(i.e., mostly empty) output. Go back from time to time and take a fresh
look—paths to programs and data may have changed underfoot and you
could be testing the wrong things. For instance, a few years ago, my “big”
data set somehow mutated into a tiny one. Machines have sped up to the
extent that I recently increased the “big” data by another order of
magnitude.

Keep records. I maintain a FIXES file that describes every change to the
code since the AWK book was published in 1988; this is analogous to
Knuth’s “The Errors of TEX” [4], though far less complete. For example,
this excerpt reveals a classic error in the C lexer:

Jul 31, 2003: fixed, thanks to andrey chernov and ruslan ermilov, a
bug in lex.c that mis-handled the character 255 in input. (it was
being compared to EOF with a signed comparison.)

As hinted at above, the C lexer has been a source of more than one prob-
lem:

Feb 10, 2001: fixed an appalling bug in gettok: any sequence of dig-
its, +, -, E, e, and period were accepted as a valid number if it started
with a period. this would never have happened with the lex version.

And one more, just to show how bugs can hide for very long periods
indeed:

Nov 22, 2003: fixed a bug in regular expressions that dates (so help
me) from 1977; it’s been there from the beginning. an anchored
longest match that was longer than the number of states triggered a
failure to initialize the machine properly. many thanks to moinak
ghosh for not only finding this one but for providing a fix, in some of
the most mysterious code known to man.

;LOGIN: APRIL 2006

Teaching

I've mentioned several places where a discussion of testing is a natural part
of some other class topic; here are a handful of others.

One early assignment asks the students to program some variant of the
compact regular expression code in Chapter 9 of The Practice of
Programming [3]. As part of the assignment, they are required to create a
number of tests in a format similar to the specialized language shown
above and to write a program to exercise their code using their tests.
Naturally, I combine all their tests with my own. It's sobering to see how
often programs work well with their author’s tests but not with tests writ-
ten by others; I continue to experiment with assignments that explore this
idea. (It’s also sobering to see how often the purported tests are in fact not
correct, which is another important lesson.)

I've also tried this assignment with unit tests—self-contained function calls
in a special driver routine—instead of a little language. The results have
been much less successful for checking individual programs, and it’s harder
to combine tests from a group of sources. For this application, the lan-
guage approach seems better.

Another assignment asks the students to write a Base64 encoder and
decoder from the one-page description in RFC 2045. This is a good exam-
ple of writing code to a standard, and since there are reference (binary)
implementations like OpenSSH, it's possible to mix and match implemen-
tations, all controlled by a shell script, to verify interoperability. I also ask
students to write a program to generate a collection of nasty tests, which
forces them to think about boundary conditions. (It’s a good idea to write a
program anyway, since it’s easier to create arbitrary binary inputs by pro-
gram than with a text editor. A surprising number of student programs
don’t handle non-ASCII inputs properly, and this potential error has to be
tested for.)

Yet another assignment gives students a taste of a frequent real-world expe-
rience: having to make a small change in a big unfamiliar program without
breaking anything. The task is to download AWK from the Web site, then
add a couple of small features, like a repeat-until loop or a new built-in
function. This is easily done by grepping through the source looking for
affected places, then adding new code by pattern-matching old code.
Naturally, they also have to provide some self-contained tests that check
their implementations, and I can run my own tests to ensure that nothing
else was affected.

Two years ago, an especially diligent student ran some GAWK tests against
the AWK he had built, and encountered an infinite loop in parsing a pro-
gram, caused by a bug in my lexer. In 1997 I had replaced the ancient Lex
lexical analyzer with handcrafted C code in an effort to increase portability.
As might have been predicted, this instead decreased reliability; most of
the bugs of the past few years have been in this C code.

In any case, I eventually found the bug but by then it was time for the next
class. So I assigned the new class the task of finding and fixing the bug
(with some generous hints), and also asked them to find the shortest test
case that would display it. Most students fixed the bug, and several came
up with tests only two characters long (shorter than I had found) that trig-
gered the infinite loop. Unfortunately, since that bug fix is now published,
I can no longer use the assignment. Fortunately, the -safe bug described
above should work well in its place.

CODE TESTING AND ITS ROLE IN TEACHING 17

18

;LOGIN: VOL. 31, NO. 2

Conclusions

For working programmers, there’s no need to belabor the importance of
testing. But I have been pleased to see how much testing can be included
in a programming course—not as an add-on lecture but as an integral part
of a wide variety of other topics—and how many useful lessons can be
drawn from it.

It's hard work to test a program, and there are often so many other pres-
sures on one’s time and energy that thorough testing can slide to the back
burner. But in my experience, once some initial effort has gone into creat-
ing tests and, more important, a way to run them automatically, the incre-
mental effort is small and the payoff very large. This has been especially
true for AWK, a language that has lived on far beyond anything the
authors would have believed when they wrote it nearly 30 years ago.

Acknowledgments

I am deeply indebted to Arnold Robbins and Nelson Beebe for nearly two
decades of invaluable help. Arnold, the maintainer of GAWK, has provided
code, bug fixes, test cases, advice, cautionary warnings, encouragement,
and inspiration. Nelson has provided thoughtful comments and a signifi-
cant number of test cases; his meticulous attention to portability issues is
without peer. My version of AWK is much the better for their contribu-
tions. I am also grateful to many others who have contributed bug reports
and code. They are too numerous to list here but are cited in the FIXES file
distributed with the source. Jon Bentley’s essays on scaffolding and little
languages [2] have influenced my thinking on testing and many other top-
ics. My thanks also to Jon, Gerard Holzmann, and David Weiss for most
helpful comments on drafts of this paper.

REFERENCES

[1] Al Aho, Brian Kernighan, and Peter Weinberger, The AWK Programming
Language, Addison-Wesley, 1988.

[2] Jon Bentley, Programming Pearls, Addison-Wesley, 2000.

[3] Brian Kernighan and Rob Pike, The Practice of Programming, Addison-
Wesley, 1998.

[4] Donald E. Knuth, “The Errors of TEX,” Software—Practice and Experi-
ence, vol. 19, no. 7, July 1989, pp. 607-685.

[5] Jon Bentley, Lynn Jelinski, and Brian Kernighan, “CHEM—A Program
for Phototypesetting Chemical Structure Diagrams,” Computers and Chem-
istry, vol. 11, no. 4, 1987, pp. 281-297.

[6] Source code for AWK is available at http://cm.bell-labs.com/cm/cs
/awkbook.

[7] The Web site for COS 333 is http://www.cs.princeton.edu/courses/
archive/spring06/cos333.

