
D A V I D B L A N K - E D E L M A N

practical Perl tools

C O N F I G U R AT I O N F I L E S

David N. Blank-Edelman is the director of technology
at the Northeastern University College of Computer
and Information Science and the author of Perl for
System Administration (O’Reilly). He has spent the
past 20 years as a system/network administrator in
large multi-platform environments, including
Brandeis University, Cambridge Technology Group,
and the MIT Media Laboratory. He was the chair of
the LISA 2005 conference.

dnb@ccs.neu.edu

L E T M E P U T D O W N T H E “ U N D E R N E W
management” sign for a moment and wel-
come you to the first article in a slightly dif-
ferent column than you are used to seeing
in this spot. It would be very difficult to
step into Adam Turoff’s shoes, especially
given his multiple years of great articles, so
I’ll be taking this column in a different
direction.

It is most auspicious that the theme of this issue
of ;login: is “system administration” because that’s
my particular bent as well (having proudly been
in the biz for about 20 years). As a sysadmin I’ve
been interested in Perl for many of those years
because it has been a good tool for lots of practi-
cal uses: hence the new column title. (To get the
heresy out of the way early in my tenure: I don’t
think Perl is always the best tool. You should
always use the best tool for the job.) So that’s
enough meta-yammering about the column; let’s
get on to the actual subject of today’s article.

Let us consider the lowly config file. For better or
worse, config files are omnipresent not just for a
sysadmin but for anyone who has ever had to
configure software before using it. Yes, GUI and
Web-based point-and-click festivals are becoming
more prevalent for configuration, but even in
those cases there’s often some piece of configura-
tion information somewhere in a file that has to
be twiddled before you can even get to that point
in the setup of new software.

From the Perl programmer’s point of view (ours),
the evolutionary stages of a program usually go as
follows.

First, the roughest, simplest of scripts (this stage
may be skipped by senior programmers):

use strict; # assume this line for all of our exam-
ples

open my $DATA_FILE_H, ‘<’, “/var/adm/data”
or die “unable to open datafile: $!\n”;

open my $OUTPUT_FILE_H, ‘>’, “/var/adm/out-
put”

or die “unable to write to outputfile: $!\n”;

while (my $dataline = <$DATA_FILE_H>) {
chomp($dataline);
if ($dataline =~ /hostname: /) {

$dataline .= “.example.edu”;
}
print {$OUTPUT_FILE} $dataline . “\n”;

}
close $DATA_FILE_H;

50 ; L O G I N : V O L . 3 1 , N O . 1

use strict; # assume this line for all of our examples

open my $DATA_FILE_H, ‘<’, “/var/adm/data”
or die “unable to open datafile: $!\n”;

open my $OUTPUT_FILE_H, ‘>’, “/var/adm/output”
or die “unable to write to outputfile: $!\n”;

while (my $dataline = <$DATA_FILE_H>) {
chomp($dataline);
if ($dataline =~ /hostname: /) {

$dataline .= “.example.edu”;
}
print {$OUTPUT_FILE} $dataline . “\n”;

}
close $DATA_FILE_H;
close $OUTPUT_FILE_H;

That’s quickly replaced by the next stage, the arrival of variables:

my $datafile = ‘/var/adm/data’; # input data file name
my $outputfile = ‘/var/adm/output’; # output data file name
my $change_tag = ‘hostname: ‘; # append data to these lines
my $fdqn = ‘.example.edu’; # domain we’ ll be appending

open my $DATA_FILE_H, ‘<’, $datafile
or die “unable to open $datafile: $!\n”;

open my $OUTPUT_FILE_H, ‘>’, $outputfile
or die “unable to write to $outputfile: $!\n”;

while (my $dataline = <$DATA_FILE_H>) {
chomp($dataline);
if ($dataline =~ /$change_tag/) {

$dataline .= $fdqn;
}
print {$OUTPUT_FILE} $dataline . “\n”;

}
close $DATA_FILE_H;
close $OUTPUT_FILE_H;

Many Perl programs happily remain at this stage for the duration of their
lifespan. However, more experienced Perl programmers recognize that
code like this is fraught with potential peril when development continues
and the program gets bigger and bigger, perhaps being handed off to other
people to maintain. This peril manifests the first time someone naïvely
adds code deep within the program that modifies $change_tag or $fdqn. All
of a sudden the output of the program changes in an unexpected and
unwanted way. In a small code snippet it is easy to spot the connection
between $change_tag or $fdqn and the desired results, but it can be much
trickier to find something like this in a program that scrolls by for many
screensful.

One approach to fixing this problem would be to rename variables like
$fdqn to something more obscure such as $dont_change_this_value_
yesiree_bob, but that’s a bad idea. Besides consuming far too many of the
finite number of keystrokes you are going to be able to type in your life-
time, it wreaks havoc on code readability. There are a number of data-hid-
ing tricks we could play instead (closures, symbol table manipulation,
etc.), but they don’t help with readability either and are more complex
than is necessary. The best idea is to use something similar to the “use con-
stants” pragma to make the variables read-only:1

use Readonly;

we’ve uppercased the constants so they stick out
note: this is the Perl 5.8.x syntax; see the Readonly docs for using
Readonly with versions of Perl older than 5.8
Readonly my $DATAFILE => ‘/var/adm/data’; # input data file name
Readonly my $OUTPUTFILE => ‘/var/adm/output’; # output data file
name
Readonly my $CHANGE_TAG => ‘hostname: ‘; # append data to
these lines
Readonly my $FDQN => ‘.example.edu’; # domain we’ll be append-
ing

open my $DATA_FILE_H, ‘<’, $DATAFILE
or die “unable to open $DATAFILE: $!\n”;

open my $OUTPUT_FILE_H, ‘>’, $OUTPUTFILE
or die “unable to write to $OUTPUTFILE: $!\n”;

while (my $dataline = <$DATA_FILE_H>) {

; LO G I N : F E B R UA RY 2 0 0 6 P R AC TI C A L P E R L TO O LS : CO N F I G U R ATI O N F I L E S 51

use Readonly;

we’ve uppercased the constants so they stick out
note: this is the Perl 5.8.x syntax; see the Readonly docs for using
Readonly with versions of Perl older than 5.8
Readonly my $DATAFILE => ‘/var/adm/data’; # input data file name
Readonly my $OUTPUTFILE => ‘/var/adm/output’; # output data file name
Readonly my $CHANGE_TAG => ‘hostname: ‘; # append data to these lines
Readonly my $FDQN => ‘.example.edu’; # domain we’ll be appending

open my $DATA_FILE_H, ‘<’, $DATAFILE
or die “unable to open $DATAFILE: $!\n”;

open my $OUTPUT_FILE_H, ‘>’, $OUTPUTFILE
or die “unable to write to $OUTPUTFILE: $!\n”;

while (my $dataline = <$DATA_FILE_H>) {
chomp($dataline);
if ($dataline =~ /$CHANGE_TAG/) {

$dataline .= $FDQN;
}

my $datafile = ‘/var/adm/data’; # input data file name
my $outputfile = ‘/var/adm/output’; # output data file name
my $change_tag = ‘hostname: ‘; # append data to these lines
my $fdqn = ‘.example.edu’; # domain we’ ll be appending

open my $DATA_FILE_H, ‘<’, $datafile
or die “unable to open $datafile: $!\n”;

open my $OUTPUT_FILE_H, ‘>’, $outputfile
or die “unable to write to $outputfile: $!\n”;

while (my $dataline = <$DATA_FILE_H>) {
chomp($dataline);
if ($dataline =~ /$change_tag/) {

$dataline .= $fdqn;
}
print {$OUTPUT_FILE} $dataline . “\n”;

}
close $DATA_FILE_H;
close $OUTPUT_FILE_H;

1. Why not actually “use constants”
instead? The Readonly module documen-
tation points out a number of reasons. The
three most compelling are: the ability to
interpolate Readonly variables into strings
(e.g., print “Constant set to
$CONSTANT\n”); the ability to lexically
scope the read-only variable (e.g.,
Readonly my $constant => “fred”) so they
can be present in only the scope you
desire; and unlike “use constant,” attempts
to redefine a Readonly variable are
rebuffed.

chomp($dataline);
if ($dataline =~ /$CHANGE_TAG/) {
print {$OUTPUT_FILE} $dataline . “\n”;

}
close $DATA_FILE_H;
Now that we’ve seen the ne plus ultra of storing configuration information
within the script,2 we’ve hit a wall: what happens when we decide to write
a second or third script that needs similar configuration information? Any
readers who reached for the cut/copy function in their editor as an answer
to that question are fired. Simple duplication of the same information into
a second script may seem harmless, but it is the first step on to the road
away from Oz and toward an unpleasant encounter with the flying mon-
keys and an unhappy lady with a broomstick. Don’t do it.

The right answer may well be some sort of config file.3 Once you’ve decid-
ed to use a config file, the next question is, What format?

Answering that question is similar to the old joke “The wonderful thing
about standards is there are so many to choose from!” Discussions of
which formats are best usually become some mishmash of religion, poli-
tics, and personal aesthetic taste. Because I’m a flaming pluralist, we’re
going to take a look at how to deal with several of the most common for-
mats and leave you to choose the best one for your application. I’ll try to
give you my humble opinion about each to help with that process.

Config File Formats

B I N A RY

The first kind of configuration file we’re going to look at is my least
favorite, so let’s get it out of the way quickly. Some people choose to store
their configuration data on disk as basically a serialized memory dump of
their Perl data structures. There are several ways to write this data struc-
ture to disk, including the old warhorse Storable:

use Storable;

write the config file data structure out to $CONFIG_FILE
store \%config, $CONFIG_FILE; # use nstore() for platform-independent
file

my $config = retrieve($CONFIG_FILE);

I’ve also become fond of the module DBM::Deep, which has the benefit of
producing data files that aren’t platform-specific by default (though
Storable’s nstore method can help with that). For a pure Perl module, it is
pretty spiffy.

use DBM::Deep;

my $configdb = new DBM::Deep “config.db”;

store some host config info to that db
$configdb->{hosts} = {

‘agatha’ => ‘192.168.0.4’,
‘gilgamesh’ => ‘192.168.0.5’,
‘tarsus’ => ‘192.168.0.6’,

};

(later) retrieve the name of the hosts we’ve stored
print join(“ “, keys %{ $configdb->{hosts} }) . “\n”;

52 ; L O G I N : V O L . 3 1 , N O . 1

use Storable;

write the config file data structure out to $CONFIG_FILE
store \%config, $CONFIG_FILE; # use nstore() for platform-independent file

later (perhaps in another program), read it back in for use
my $config = retrieve($CONFIG_FILE);

use DBM::Deep;

my $configdb = new DBM::Deep “config.db”;

store some host config info to that db
$configdb->{hosts} = {

‘agatha’ => ‘192.168.0.4’,
‘gilgamesh’ => ‘192.168.0.5’,
‘tarsus’ => ‘192.168.0.6’,

};

(later) retrieve the name of the hosts we’ve stored
print join(“ “, keys %{ $configdb->{hosts} }) . “\n”;

print {$OUTPUT_FILE} $dataline . “\n”;
}
close $DATA_FILE_H;
close $OUTPUT_FILE_H;

2. There are some games we could play with
the __DATA__ token, but, in general, keeping
the configuration information at the beginning
of the script is better form.

3. If your thoughts sped ahead to more sophisti-
cated solutions, hold on—we’ll mention them
at the end of this article.

Files in this format are typically really fast to read, which can be quite
helpful if performance is a concern. Similarly, there’s something elegant
about having the information stay close to the native format (i.e., a Perl
data structure you’re going to traverse in memory) for its entire lifespan
versus transcoding it back and forth from another representation through a
myriad of parsing/slicing/dicing steps.

So why is this my least favorite kind of config file? First, and least palat-
able to me, is the binary nature of the files created. I’d much prefer to have
my config files human-readable wherever possible. I don’t want to have to
rely on a special program to decode the information (or to encode it, when
the data gets written). Besides the visceral reaction, it also means I can’t
operate on the data using other standard tools such as grep. Luckily, if you
are looking for speed, there are other alternatives we’ll be discussing in a
moment.

N A K E D D E L I M ITE D DATA

Also in the category of formats I tend to dislike are those that are simply a
set of data in fields delimited by some character. The /etc directory on a
UNIX box is lousy with them: passwd, group, and so on. Comma or
Character Separated Value files (CSV, take your pick of expansions) are in
the same category.

Reading them in Perl is pretty easy because of the built-in split() operator:

use Readonly;

Readonly my $DELIMITER => ‘:’;
Readonly my $NUMFIELDS => 4 ;

open and read in a line from your config file here

now parse the data
my ($field1, $field2, $field3, $field4, $excess) =

split $DELIMITER, $line_of_config, $NUMFIELDS;

For CSV files, there are a number of helpful modules to handle tricky situ-
ations like escaped characters (i.e., using commas in the data itself, not
anything from a prison break). Text::CSV::Simple, a wrapper around
Text::CSV_XS, works well:

use Text::CSV::Simple;

my $csv_parser = Text::CSV::Simple->new;

@data will then contain a list of lists, one entry per line of file
my @data = $csv_parser->read_file($datafile);

This data format is also on my “least-favored” list. Unlike the previous for-
mat, it has the benefit of being human-readable and standard tool-
parseable. However, it also has the drawback of being easily human-misun-
derstandable and mangleable. Without a good memory or external docu-
mentation, it is often impossible to understand the contents of the file
(“What was the 7th field again?”). This leaves it susceptible to fumble-fin-
gering and subtle typos. It is field-order fragile.

K EY/ VA LU E PA I R S

The most common format around is the “key {something} value” style,
where {something} is usually whitespace, a colon, or an equals sign.
Besides the separator difference, there are often other twists like .ini “[sec-
tions]” names or configuration scopes (à la Apache’s configuration file).

; LO G I N : F E B R UA RY 2 0 0 6 P R AC TI C A L P E R L TO O LS : CO N F I G U R ATI O N F I L E S 53

use Readonly;

Readonly my $DELIMITER => ‘:’;
Readonly my $NUMFIELDS => 4 ;

open and read in a line from your config file here

now parse the data
my ($field1, $field2, $field3, $field4, $excess) =

split $DELIMITER, $line_of_config, $NUMFIELDS;

use Text::CSV::Simple;

my $csv_parser = Text::CSV::Simple->new;

@data will then contain a list of lists, one entry per line of file
my @data = $csv_parser->read_file($datafile);

Dealing with formats like this using Perl modules turns out to be initially
hard because there are too many choices.4 No, really! In my survey of
CPAN for config modules for this article, I encountered at least 26 modules
of interest that fall into this category. To winnow this down, there are a
number of decision forks:

1. How complex do you want the configuration file to be: Will simple .ini files
work for you? More complex .ini files? Apache style? Extended Apache
style? Do you need sections? Do you need scoped directives? Want to write
your own grammar representing the format?

2. How would you like to interact with the configuration information: Want to
be handed back a simple data structure? an object representing the informa-
tion? Prefer to treat things like magical tied hashes or Perl constants? Does
the information you get back have to come back in the same order as it is
listed in the config file? Would you be happy if the module figured out the
config file format for you?

3. What else is important to you: Do you care how quickly the configuration is
parsed or how much memory the parsing process takes? Should it handle
caching of the config for fast reload? Do you want to be able to cascade the
configs (i.e., have a global config with other configs for more specific infor-
mation)? Should the config be validated on parse?

The answer to each of these questions will point at a different module or
set of modules available for your use. We can’t dive into all of the modules
out there, so let’s look at three you may not have seen:

Config::Std is Damian Conway’s config parsing module. He’s a smart guy
and so his module in this space attempts to be the same. Unlike most con-
figuration modules, his module lets you read and then update the configu-
ration file while preserving the section order and the comments. The file
format it uses looks much like .ini files, so it should be pretty easy for
most people to understand on first sight. Here’s an example of the module
in action. Note: The examples in this section will be really boring because
the modules are all designed to make the process of dealing with config
files simple (boring).

use Config::Std;

read_config ‘config.cfg’ => my %config;

now work with $config{Section}{key}...

and write the config file back out again

write_config %config;

In Conway’s book Perl Best Practices, he suggests that if you need some-
thing more sophisticated than his simple Config::Std format can provide,
Config::General can oblige. It handles files in the Apache config file family
and has a much richer syntax. Actual use of the module isn’t any more
complex than Config::Std:

use Config::General;

my %config = ParseConfig(-ConfigFile => ‘rcfile’);

now work with the contents of %config...

and write the config file back out again
SaveConfig(‘configdb’, \%config);

Config::Scoped gives you still more bells and whistles. It parses a similarly
complex format that includes scoped directives (essentially the one used
by BIND or the ISC DHCP server), can check the data being parsed, will
check the permissions of the config file itself, and includes caching func-

54 ; L O G I N : V O L . 3 1 , N O . 1

4. For more information on this, Barry
Schwartz’s book The Paradox of Choice: Why
More Is Less is recommended.

use Config::Std;

read_config ‘config.cfg’ => my %config;

now work with $config{Section}{key}...

and write the config file back out again

write_config %config;

use Config::General;

my %config = ParseConfig(-ConfigFile => ‘rcfile’);

now work with the contents of %config...

and write the config file back out again
SaveConfig(‘configdb’, \%config);

tionality. This caching functionality allows your program to parse the more
complex format once and then quickly load in a binary representation of
the format on subsequent loads if the original file hasn’t changed. This
gives us the speed we coveted from the first kind of file we looked at and
the readability of the file formats discussed in this section. It doesn’t, how-
ever, offer an easy way to programmatically update an existing configura-
tion file like some of the other modules we’ve seen. Here’s a small snippet
for how to use the caching functionality:

use Config::Scoped;
my $parser= Config::Scoped->new(file => ‘config.cfg’);
my $config = $parser->parse;

store the cached version on disk for later use
$parser->store_cache(cache => ‘config.cfg.cache’);

(later, in another program...)
$cfg = Config::Scoped->new(file => ‘foo.cfg’)->retrieve_cache;

If you are the type of person who likes to smelt your own bits, then there
are also a number of other modules like Config::Grammar which allow you
to define your own grammar to represent the configuration file format. I
tend not to like creating custom formats, if I can help it, for reasons of
maintainability, but if this suits your purposes these modules can oblige.

M A R KU P L A N G UAG E S

The last format type we’ll be looking at is becoming increasingly common
as XML continues to pervade more and more of the IT space (largely due
to its shininess). And the use of a markup language like XML to describe
configuration information is becoming more and more prevalent.5 Market-
ing potential aside, XML does have a few nice properties when used for
config files. When kept simple (because a complex/convoluted XML docu-
ment is as inscrutable as one in any other format), XML config files can be
nearly self-documenting. The freedom to define almost arbitrary tags lets it
be as descriptive as you’d like. If I write a simple XML file like this, you
can probably understand the gist of it without needing a separate manual
page:

<config>
<host>

<name> agatha </name>
<addr> 192.168.0.4 </addr>

</host>
...

</config>

Another plus of this format is the well-defined syntax and optional valida-
tion mechanisms which are part and parcel of XML. At the very least, this
means that all of your XML config files can share the same parser and vali-
dation mechanism independent of their actual content.

The easiest way to read an XML config file from Perl is the XML::Simple
module. It allows you to write simple code like this to slurp an XML file
into Perl data structure:

use XML::Simple;

my $config = XMLin(‘config.xml’);

work with $config->{stuff}

Turning that data structure back into XML for writing after you’ve made a
change to it is just as easy:

; LO G I N : F E B R UA RY 2 0 0 6 P R AC TI C A L P E R L TO O LS : CO N F I G U R ATI O N F I L E S 55

5. There are in fact XML dialects such as
DCML, NetML, and SAML which are gunning
for parts of the configuration management
space.

use Config::Scoped;
my $parser= Config::Scoped->new(file => ‘config.cfg’);
my $config = $parser->parse;

store the cached version on disk for later use
$parser->store_cache(cache => ‘config.cfg.cache’);

(later, in another program...)
$cfg = Config::Scoped->new(file => ‘foo.cfg’)->retrieve_cache;

<config>
<host>

<name> agatha </name>
<addr> 192.168.0.4 </addr>

</host>
...

</config>

use XML::Simple;

my $config = XMLin(‘config.xml’);

work with $config->{stuff}

... (data structure already in place)
open my $CONFIG_FILE_H, ‘>’, $configfile

or die “Can’t write to $configfile:$!\n”;

print {$CONFIG_FILE_H} XMLout($config);

close $CONFIG_FILE_H;

Now, some people aren’t swayed by the sparkly nature of XML. They think
that there’s too much markup for each piece of content and would prefer
something with fewer angle brackets. For these people there is a lighter-
weight format called YAML (which stands for YAML Ain’t Markup
Language). YAML tries to strike a balance between structure and concision,
and so it looks a little cleaner to the average eye:

name: agatha
address: 192.168.0.4

name: mr-tock
address:

- 192.168.0.10
- 192.168.0.11
- 192.168.0.12

The Perl module to parse YAML
6

is called, strangely enough, YAML and is
used like this:

use YAML;

my @config = YAML::LoadFile(‘config.yml’);

@config now contains a list of references to hashes, one per record
we now can use $config[N]->{address}

(later...) dump the config back out to a file
YAML::DumpFile(‘config.yml’ , @config);

If you’d prefer a more object-oriented way of working with YAML,
Config::YAML can provide it.

There are an infinite number of possible formats for config files, but at
least now we’ve hit the highlights.

All-in-One Modules

If all of this talk about picking the right module for config parsing has
made your brain hurt, let me ease us toward the end of this article with a
quick look at a set of modules which can help sidestep the choice.

Config::Context is a wrapper around the Config::General, XML::Simple, and
Config::Scoped modules that allows you to use a single module for each of
the formats those modules handle. On top of this, it also adds contexts à la
Apache so you can use <Location> </Location> tags in those file formats.

If you crave a module with a larger menu of config file formats supported,
Config::Auto can handle colon/space/equals-separated key/value pairs, XML
formats, Perl code, .ini formats, BIND9 style, and irssi config file formats.
Not only that, it will (by default) guess the format it is parsing for you
without further specification. If that’s too magical for you, a format can be
specified.

56 ; L O G I N : V O L . 3 1 , N O . 1

6. One nice property of YAML is it is lan-
guage-independent. There are YAML parsers
and emitters for Ruby, Python, PHP, Java,
OCaml, and even Javascript.

... (data structure already in place)
open my $CONFIG_FILE_H, ‘>’, $configfile

or die “Can’t write to $configfile:$!\n”;

print {$CONFIG_FILE_H} XMLout($config);

close $CONFIG_FILE_H;

name: agatha
address: 192.168.0.4

name: mr-tock
address:

- 192.168.0.10
- 192.168.0.11
- 192.168.0.12

use YAML;

my @config = YAML::LoadFile(‘config.yml’);

@config now contains a list of references to hashes, one per record
we now can use $config[N]->{address}

(later...) dump the config back out to a file
YAML::DumpFile(‘config.yml’ , @config);

Epilogue
If you are sick of talking about config files at this point (I don’t blame
you), let’s end with a brief mention of some of the more advanced alterna-
tives. There are a number of other reasonable places to stash config infor-
mation.7 Shared memory segments can work well when performance is the
key criterion. Many systems are now keeping their configuration in data-
bases. Others have a specific network server to distribute configuration
information.

These are all interesting directions to explore, but I’m afraid we’re out of
time. Take care, and I’ll see you next column.

; LO G I N : F E B R UA RY 2 0 0 6 P R AC TI C A L P E R L TO O LS : CO N F I G U R ATI O N F I L E S 57

7. There are also a number of other unreason-
able places—for example, hidden in image files
using Acme::Steganography::Image::Png or in a
play via Acme::Playwright.

Join us in Boston for 5 days of groundbreaking
research and cutting-edge practices in a wide
variety of technologies and environments.
Don’t miss out on:
• Extensive Training Program featuring

expert-led tutorials
• New! Systems Practice & Experience Track

(formerly the General Session Refereed
Papers Track)

• Invited Talks by industry leaders
• And more
Please note: USENIX ’06 runs Tuesday–Saturday.

Check out
the Web site

for more information!
www.usenix.org/usenix06

