
G E R N O T H E I S E R

secure embedded
systems need
microkernels
Gernot Heiser is professor of operating systems at
the University of New South Wales and leader of the
research program in embedded, real-time, and oper-
ating systems at National ICT Australia (NICTA). His
research interests include microkernels and micro-
kernel-based systems, operating systems for embed-
ded systems, and OS-level power management, as
well as general performance and scalability issues in
operating systems.

gernot@nicta.com.au

T H E I M M E N S E P O P U L A R I T Y O F A L L
sorts of electronic devices means that they
have become an integral part of our lives; it
is becoming difficult to imagine living
without them. In the process, they are
increasingly trusted with sensitive data, the
loss of which can cause serious distress or
financial harm. Security is therefore becom-
ing a significant issue. Yet, as we know from
the PC world, commodity computer sys-
tems are not well-defended against securi-
ty threats. In this article we examine the
security threats facing embedded systems,
and what needs to be done to make them
secure.

Embedded Systems Security Threats

Embedded systems—computers which are part of a
larger system that is not primarily a computing de-
vice—are commonplace; in industrialized countries
they outnumber people by about an order of magni-
tude. This includes cell phones, PDAs, entertainment
devices, cars, washing machines, smart cards, broad-
band modems, and many more.

With our increasing dependence on embedded sys-
tems, their reliability and security become more and
more of an issue. For example, cell phones and PDAs
are used to perform financial transactions, which
means that they are trusted with account access
codes. Embedded devices also store increasing
amounts of sensitive personal data, from address
books to medical data. Hence, the security of such
systems is a serious concern.

The main reason that embedded systems are becom-
ing increasingly vulnerable is the pervasive use of
wireless communication. Besides the already ubiqui-
tous mobile phones, PDAs, and laptops, there is a set
of devices, now quite common, whose primary
purpose is not communication but which benefit
from wireless communication. These include vehi-
cles, access tokens, domestic appliances, and medical
devices, among others.

In the world of wireless connectivity, physical access
is no longer required in order to compromise a de-
vice, and the environment in which such devices op-
erate is increasingly hostile. Devices can be attacked
by an invisible foe behind an opaque wall. If the de-
vice is connected to the Internet, the attacker can be
located anywhere in the world. Furthermore, users

; LO G I N : D E C E M B E R 2 0 0 5 S E C U R E E M B E D D E D SYSTE M S N E E D M I C RO K E R N E LS 9

10 ; L O G I N : V O L . 3 0 , N O . 6

who download executable code on their mobile devices open up these devices to
attacks from within (by viruses and worms).

Previously, compromised equipment would most likely result in inconvenience
and annoyance. Now that devices hold increasing amounts of sensitive personal
data, the consequences of security breaches are much more serious.

Moreover, the whole wireless communication infrastructure is potentially vul-
nerable. Until recently, low-level communication operations were all done by
hardware, which is secure from subversion except by the application of physical
force. But now even the lowest-level functionality has moved into software (soft-
ware-defined radio), making it vulnerable to attacks that change the software.

For example, a compromised mobile phone handset could be turned into a jam-
mer, disabling all communication of a particular carrier within a radius of poten-
tially several kilometers. If a large number of compromised handsets launched a
concerted attack, a country’s wireless communication infrastructure could be
disabled within minutes—a disaster which would be very difficult to recover
from. Such an attack is not out of the question. The Kabir cell-phone virus,
which spreads via Bluetooth, is estimated to have infected millions of phones al-
ready.

Protecting Embedded-Systems Security

The key to preventing such disasters is to equip mobile devices with software
that is secure by design. As the experience of the PC world shows, this is not
easy—clearly, the standard of mobile device security must be much higher than
what we are used to from the PC world. The problem is that the software driving
mobile devices is becoming as complex as that of PCs, owing to the dramatic in-
crease in functionality of such devices. Top-of-the-line cell phones already run
software that is composed of millions of lines of code (LOC), and top-of-the-line
cars contain in excess of a gigabyte of software.

Such large systems are impossible to make fault-free. Experience shows that
even well-engineered software averages at least one fault every few thousand
lines of code (and well-engineered software is rare). This is made worse by the
traditional approach to embedded-systems software, which tends to be built on
top of a real-time executive without memory protection. In such a system every
bug in any part of the system can cause a security violation.

In security terms, the part of a system that can circumvent security policies (and
must therefore be fully trusted) is called the trusted computing base (TCB). In a
system without memory protection, the TCB is the complete system (of
potentially millions of lines of code). Clearly, such a large TCB cannot be made
trustworthy.

Trustworthy TCB?

Over the past few years the embedded-systems industry has been moving to-
ward the use of memory protection, and operating systems which support it.
With this comes the increasing popularity of commodity operating systems, par-
ticularly embedded versions of Linux and Windows. Those systems, if stripped
to a bare minimum for embedded-systems use, may have a kernel (defined as
the code executing in the hardware’s privileged mode) of maybe 200,000 LOC,
which is a lower bound on the size of the TCB. In practice, the TCB is larger
than just the kernel; for example, in a Linux system every root daemon is part of
the TCB. Hence the TCB will, at an optimistic estimate, still contain hundreds if
not thousands of bugs, far too many for comfort.

; LO G I N : D E C E M B E R 2 0 0 5 S E C U R E E M B E D D E D SYSTE M S N E E D M I C RO K E R N E LS 11

If we want a secure system, we need a secure, trustworthy TCB, which really
means one free of bugs. Is this possible?

Methods for guaranteeing the correctness of code (exhaustive testing and math-
ematical proof, a.k.a. formal methods) scale very poorly; they are typically limit-
ed to hundreds or, at best, thousands of lines of code. Can the TCB be made so
small?

Maybe not, but maybe it doesn’t have to be. Modularity is a proven way of deal-
ing with complexity, as it allows one to separate the problem into more tractable
segments. However, with respect to trustworthiness, modularizing the kernel
does not help, as there is no protection against kernel code violating module
boundaries. As far as assertion goes, the kernel is atomic.

The situation is better for non-kernel code. If this is modularized, then individ-
ual modules (or components) can be encapsulated into their own address spaces,
which means that the module boundaries are enforced by hardware mechanisms
mediated by the kernel. If the kernel is trustworthy, then the trustworthiness of
such a component can be established independently from other components.
That way, the TCB can be made trustworthy even if it is larger than what is
tractable by exhaustive testing or formal methods.

Minimal Kernel

The key to a trustworthy TCB is therefore a very small kernel, small enough to
be verified. A minimal kernel will only contain code that must be privileged; any
functionality that can be performed by unprivileged code should remain unpriv-
ileged (i.e., outside the kernel). Such a kernel is called a microkernel. It contains
little more than the fabric required to enforce the interfaces between compo-
nents: protection (in the form of address spaces) plus a mechanism, called inter-
process communication (IPC), for controlled communication across address
space.

A true microkernel in this strict sense has not been built to date. However, there
are good approximations, specifically the L4 microkernel. Its most mature and
most widely used implementation, L4Ka::Pistachio, developed at the University
of Karlsruhe, consists of about 10,000 lines of code (counting only code re-
quired to build it on a particular architecture, e.g., ARM). Ten thousand LOC is
still large for a system that is aimed to be completely bug-free, but the goal is
within reach. In fact, at NICTA we have two projects underway that aim to
achieve exactly this (and similar activities are under way at Dresden University
of Technology).

The project called seL4 seeks to produce a new version of L4 that is a better ap-
proximation of a microkernel and, at the same time, an API that is better
matched to the requirements of secure systems. We expect the seL4 kernel to
consist of only 5000–7000 LOC.

The second project, called L4.verified, aims at a mathematical proof of the cor-
rectness of the seL4 kernel. Specifically, the project aims to prove that the ker-
nel’s implementation is consistent with its specification (i.e., a formal model of
its ABI). The formal model of the kernel can then be used to prove security
properties of systems built on top of the kernel.

While it will take a few years to achieve this goal of a formal correctness proof,
the small size of the existing kernel already provides an excellent base for build-
ing a more trustworthy TCB. Although testing and code inspection cannot give
complete assurance of the kernel’s correctness, the small size makes it possible
to reduce the number of defects to maybe a few dozen. Debugging is aided by
the fact that the kernel provides only a very small number of fundamental mech-

12 ; L O G I N : V O L . 3 0 , N O . 6

anisms. This means that any non-trivial system built on top exercises almost the
complete kernel functionality—bugs do not have many places to hide.

Minimal TCB

The L4 kernel supports the construction of a small TCB. We have developed a
minimal operating system, called Iguana, specifically for use in embedded sys-
tems. Iguana provides essential services, such as memory management, naming,
and support for device drivers—enough for many embedded applications. The
complete resident1 TCB of such a system, consisting of L4, Iguana, and a few
drivers, can be as small as about 20,000 LOC. We expect that a minimal TCB of
seL4-based systems will be 10,000–15,000 LOC.

It should be noted that the TCB (and its size) depends a lot on what functionali-
ty a system is to provide. Specifically, systems with non-trivial user interfaces
(such as graphics displays and pointer devices) tend to have larger TCBs, which
may include a trustworthy window system that guarantees that the user’s input
is consumed by the right program. The sizes quoted in the preceding paragraph
are for a system with minimal requirements.

L4/Iguana is mature and has excellent performance, good enough to be de-
ployed in commercial products; it will ship in a major consumer item early next
year. Its users will have an upgrade path to a provably correct seL4-based sys-
tem, once the L4.verified project succeeds.

Fine-Grained Access Control

Besides the large size of the TCB, there is at least one other reason why tradition-
al operating systems such as Linux and Windows are a poor match for the re-
quirements of embedded systems. They have a model of access control that orig-
inated in time-shared mainframes: different users of the system must be
protected from each other, while there is no reason to restrict a particular user’s
access to their own data.

Embedded systems, on the other hand, are typically single-user systems, and the
protection issue is quite different: different programs run by the same user
should have different access rights, determined by their function rather than the
identity of the user. This is an instance of the security principle of least privilege.
Traditional systems violate least privilege, by running every program with the
full set of access rights (to files and other objects) of the user. This is one of the
reasons why viruses and worms can cause so much damage: A game program
should only have access to the I/O devices needed to play it, its own executable,
a file to save its state, and (for networked games) a well-defined communication
channel. Having full access permits a virus embedded in the game program to
destroy the user’s files or steal their contents.

In a microkernel-based system, where software is encapsulated into components
with hardware-enforced interfaces, all communication must employ the kernel-
provided IPC mechanism. This means that the kernel is in full control over all
communication between components. It also means that it is possible to trans-
parently interpose security monitors between components, which can be used to
enforce system-wide security policies. Such a policy could be that a program im-
ported into the system (such as a game) is only allowed to access files that have
been explicitly assigned to it by the user, thus preventing the theft of sensitive
information.

; LO G I N : D E C E M B E R 2 0 0 5 S E C U R E E M B E D D E D SYSTE M S N E E D M I C RO K E R N E LS 13

Virtual Machines

Microkernels have a lot in common with virtual machine monitors (VMMs):
both provide a substrate on top of which the “real” operating system is imple-
mented. The key difference is that microkernels are designed to be a minimal
layer to support arbitrary systems, while modern VMMs such as Xen are de-
signed specifically to support (multiple) legacy operating systems. This means
that virtual machines increase rather than decrease the size of the TCB, com-
pared to simply running a legacy OS. Furthermore, most modern VMMs are ac-
tually much larger than a well-designed microkernel. This is not inherent—as
demonstrated by L4Linux, which shows that L4 makes an excellent VMM—but
is a result of the different design goals.

The story is similar for so-called process virtual machines, such as the Java Virtual
Machine, which provide a higher-level API than classical VMMs. Here the com-
plete language environment is part of the TCB, in addition to the operating sys-
tem on which the virtual machine is hosted. They provide a good way to encap-
sulate untrusted applications (such as mobile code) but are no solution to the
overall security problem in embedded systems.

Conclusion

The idea of microkernels has been around in one form or another for about 35
years. After a boom in the late ’80s they lost popularity, mostly as a result of very
poor performance exhibited by systems built on top of the popular Mach kernel.
We now understand much better how to build microkernels with good perfor-
mance, and it has been shown that microkernel-based systems achieve perfor-
mance close to traditional (monolithic) systems. Still, microkernels have retained
a reputation for poor performance and as academic toys. However, industry,
seeing microkernels’ potential as a solution to the security problems of embed-
ded systems, is now ready to embrace them.

Further Reading

The philosophy behind L4 and microkernels was presented by Jochen Liedtke,
“Towards Real Microkernels,” Communications of the ACM, vol. 39, no. 9, pp.
70–77, September 1996. Hermann Härtig et al., “The Performance of µ-Kernel-
Based Systems,” 16th ACM Symposium on OS Principles (SOSP) 1997, examined
the performance of L4-based systems and described L4Linux, which in today’s
language is a paravirtualized Linux on L4 as a VMM. More information about
L4, its implementations, and systems built on top can be found at
http://l4hq.org. The home of L4Ka::Pistachio is http://l4ka.org.

Information about the seL4 and L4.verified projects can be found at
http://ertos.nicta.com.au/research/. This site contains links to further publica-
tions, including Harvey Tuch et al., “OS Verification—Now!” Tenth Workshop on
Hot Topics in Operating Systems (HotOS X), 2005.

Related is the EROS OS, which is much less of a minimal system but is more se-
curity-focused than existing L4 implementations, and is providing many of the
ideas for seL4. The main publication on EROS is Jonathan S. Shapiro et al.,
“EROS: A Fast Capability System,” 17th ACM Symposium on OS Principles
(SOSP), 1999.

NOTE
1. The C compiler is, strictly speaking, also part of the TCB, but it is not part of what is
shipped to the customer and therefore cannot be compromised by worms or viruses.

