14

SHAYA POTTER AND JASON NIEH

breaking the ties
that bind

APPLICATION ISOLATION AND

MIGRATION

Shaya Potter is a Ph.D. student in the Computer
Science Department at Columbia University. His
research focuses on virtualization and process
migration technologies to improve the way users
and administrators use their computers.

spotter@cs.columbia.edu

Jason Nieh is an associate professor of computer
science at Columbia University and director of
Columbia’s Network Computing Laboratory. He is
also the technical advisor for nine states on the
Microsoft Antitrust Settlement. His current research
interests are in systems, including operating
systems, thin-client computing, utility computing,
Web and multimedia systems, and performance
evaluation.

nieh@cs.columbia.edu

;LOGIN: VOL. 30, NO. 6

AS COMPUTERS BECOME MORE
ubiquitous in large corporate, government,
and academic organizations, the cost of
owning and maintaining them is becoming
unmanageable. Computers are increasingly
networked, which only complicates the
management problem given the myriad of
viruses and other attacks commonplace in
today’s networks. Security problems can
wreak havoc on an organization’s comput-
ing infrastructure. To prevent this, software
vendors frequently release patches that can
be applied to address security and mainte-
nance issues that have been discovered.
This becomes a management nightmare
for administrators who take care of large
sets of machines.

Even when software security or maintenance updates
are applied, they commonly result in system disrup-
tions. Patching an operating system can cause the en-
tire system to be down for extended periods, and a
system administrator who chooses to fix an OS secu-
rity problem immediately risks upsetting his users be-
cause of loss of data. Therefore, a system administra-
tor must schedule downtime in advance and in
cooperation with all the users, leaving the computer
vulnerable until repaired. If the operating system is
patched successfully, the system downtime may be
limited to just a few minutes during the reboot. Even
then, users are forced to incur additional inconve-
nience and delays in restarting applications and in at-
tempting to restore their sessions to the state they
were in before shutdown.

AutoPod is a system we have built at Columbia Uni-
versity that provides an easy-to-use autonomic infra-
structure for operating system self-maintenance. Au-
toPod uniquely enables unscheduled operating
system updates of commodity operating systems
while preserving application service availability dur-
ing system maintenance [1]. AutoPod provides this
functionality without modifying, recompiling, or re-
linking applications or operating system kernels. This
is accomplished by combining three key mechanisms:
a lightweight virtual machine isolation abstraction
that can be used at the granularity of individual appli-
cations; a checkpoint-restart mechanism that operates
across operating system versions with different secu-
rity and maintenance patches; and an autonomous
system status service that monitors for system faults
and security updates.



AutoPod is based on a virtual machine abstraction
called a pod (PrOcess Domain) [2, 3]. A pod looks
just like a regular machine and provides the same ap-
plication interface as the underlying operating sys-
tem, but it also provides a complete secure virtual ma-
chine abstraction with heterogeneous migration
functionality. Pods can be used to run any applica-
tion, privileged or otherwise, without modifying, re-
compiling, or relinking applications. Processes within
a pod can make use of all available operating system
services, just like processes executing in a traditional
operating system environment. Unlike a traditional
operating system, the pod abstraction provides a self-
contained unit that can be isolated from the system,
checkpointed to secondary storage, migrated to an-
other machine, and transparently restarted.

A pod does not run an operating system instance but,
rather, offers a virtualized machine environment by
providing a host-independent virtualized view of the
underlying host operating system. This is done by
giving each pod its own virtual private namespace. All
operating system resources are only accessible to
processes within a pod through the pod’s virtual pri-
vate namespace.

A pod namespace is private in that only processes
within the pod can see the namespace. It is private in
that it masks out resources that are not contained
within the pod. Processes inside a pod appear to one
another as normal processes that can communicate
using traditional IPC mechanisms. Processes outside
a pod do not appear in the namespace and are there-
fore not able to interact with processes inside a pod
using IPC mechanisms such as shared memory or
signals.

A pod namespace is virtual in that all operating sys-
tem resources, including processes, user information,
files, and devices, are accessed through virtual identi-
fiers within a pod. These virtual identifiers are dis-
tinct from host-dependent resource identifiers used
by the operating system. Since the pod namespace is
distinct from the host’s operating system namespace,
the pod namespace preserves resource-naming con-
sistency even if the underlying operating system
namespace changes, as is the case in migrating
processes from one machine to another.

The pod private virtual namespace enables secure iso-
lation of applications by providing complete media-
tion to operating system resources. Pods can restrict
what operating system resources are accessible within
a pod by not providing identifiers to such resources
within its namespace. A pod only needs to provide ac-
cess to resources that are needed for running those
processes within the pod. It does not need to provide
access to all resources to support a complete operat-
ing system environment. An administrator can con-

;LOGIN: DECEMBER 2005

figure a pod in the same way she configures and in-
stalls applications on a regular machine. Pods enforce
secure isolation to prevent exploited pods from being
used to attack the underlying host or other pods on
the system. Similarly, the secure isolation allows one
to run multiple pods from different organizations,
with different sets of users and administrators on a
single host, while retaining the semantic of multiple
distinct and individually managed machines.

Many ways have been proposed for isolating applica-
tions on a single system. These systems, such as
VMware’s and Xen’s virtual machine technology, So-
laris’s Zone virtual servers, and FreeBSD’s jails, differ
from AutoPod in a fundamental way. They restrict a
running process to a single kernel instance. AutoPod
is the only system that enables an administrator to
checkpoint a generic set of processes running on one
kernel with known security problems and restart
those processes on a machine running an updated
kernel. By providing each pod with its own virtual
private namespace, AutoPod has advantages over sys-
tems that just prevent applications from making use
of specific global resources. Those systems only re-
strict what a process can do to the namespace, instead
of providing each pod with its own complete virtual
private namespace to work with. AutoPod provides
isolation without requiring multiple operating system
instances, and implements all of its functionality
without any invasive kernel support.

AutoPod provides this functionality using a virtual-
ization architecture that operates between applica-
tions and the operating system, without requiring any
changes to applications or the operating system ker-
nel. This virtualization layer is used to translate be-
tween the pod namespaces and the underlying host
operating system namespace. It protects the host op-
erating system from dangerous privileged operations
that might be performed by processes running within
pods, and it protects those processes from processes
outside of the pods.

Pods are supported using virtualization mechanisms
that translate between pod virtual resource identifiers
and operating system resource identifiers. Every re-
source that a process in a pod accesses is through a
virtual private name that corresponds to an operating
system resource identified by a physical name. When
an operating system resource is created for a process
in a pod, such as with process or IPC key creation, in-
stead of returning the corresponding physical name
to the process, the pod virtualization layer catches the
physical name value and returns a virtual private
name to the process. Similarly, any time a process
passes a virtual private name to the operating system,
the virtualization layer catches it and replaces it with
the appropriate physical name. The key pod virtual-

BREAKING THE TIES THAT BIND

15



16

ization mechanisms used are a system call interposi-
tion mechanism and the chroot utility, with file sys-
tem stacking to provide each pod with its own file
system namespace, which can be separate from the
regular host file system.

Pod virtualization uses system call interposition to
virtualize operating system resources, including
process identifiers, keys, and identifiers for IPC
mechanisms, such as semaphores, shared memory,
message queues, and network addresses. System call
interposition wraps existing system calls to check and
replace arguments that take virtual names with the
corresponding physical names before calling the orig-
inal system call. Similarly, wrappers are used to cap-
ture physical name identifiers that the original system
calls return, and return corresponding virtual names
to the calling process running inside the pod. The
pod’s virtual names are maintained consistently as the
pod migrates from one machine to another and are
remapped appropriately to underlying physical
names, which may change as a result of migration.

To enable processes within a pod to run with root
privilege, AutoPod interposes on select system calls
that could allow a privileged process to break the vir-
tualized namespace. By selectively controlling how
specific system calls are used, AutoPod is able to en-
able processes to run with privilege, while preventing
them from using that privilege to break out of the
pod’s context. Specifically, AutoPod disables certain
system calls that do not make sense within a pod,
drops a process’s privileges for other system calls, and
filters the arguments for system calls.

Because commodity operating systems are not built to
support multiple namespaces, one security issue that
pod virtualization must address is that there are many
ways to break out of a standard chrooted environ-
ment, especially if one allows the chroot system call
to be used by processes in a pod. Pod file system vir-
tualization enforces the chrooted environment and
ensures that the podss file system is only accessible to
processes within the given pod, by using a simple
form of file system stacking to implement a pod-
aware barrier directory. The barrier directory provides
a file system permission function that denies access to
all processes that are running within a pod context,
even if they are running as root. By preventing any
process within a pod context from accessing it, the
processes cannot walk past it. This prevents a process
that breaks out of the chroot context—which is sim-
ple if one allows root processes and the chroot system
call to be used—from gaining access to any files out-
side of the pod’s virtualized file system view.

To support migration across different kernels, Auto-
Pod uses a checkpoint-restart mechanism that em-
ploys an intermediate format to represent the state

;LOGIN: VOL. 30, NO. 6

that needs to be saved on checkpoint. On checkpoint,
the intermediate format representation is saved and
digitally signed to enable the restart process to verify
the integrity of the image. Although the internal state
that the kernel maintains on behalf of processes can
be different across different kernels, the high-level
properties of the process are much less likely to
change. We capture the state of a process in terms of
higher-level semantic information specified in the in-
termediate format, rather than kernel-specific data in
native format, to keep the format portable across dif-
ferent kernels. Open network connections are pre-
served as a pod moves between computers based on
network address virtualization [3, 4].

AutoPod provides an autonomic system status service
to control when and where pods are checkpointed
and restarted. Many operating system vendors pro-
vide their users with the ability to automatically
check for system updates and to download and install
them when they become available. Examples of these
include Microsoft's Windows Update service and the
Debian distribution’s security repositories. AutoPod
monitors these security repositories and determines
whether a system reboot is required to install security
updates. If so, it checkpoints the pods running on the
system and migrates them to other systems to be
restarted, ensuring that no state is lost and minimiz-
ing application downtime.

We’ve implemented AutoPod in Linux as a loadable
kernel module and user-level utilities. We've used Au-
toPod to migrate applications across operating system
maintenance and security updates as well as across
major kernel changes, including Linux 2.4 and 2.6
kernels. Our experiences using AutoPod on a wide
range of everyday desktop and server applications
demonstrate that it imposes very little virtualization
overhead and can provide fast, subsecond checkpoint
and restart times [2, 3, 5].

As an example of the benefits of AutoPod and how
easy it is to set up and use, let us consider AutoPod in
the context of email delivery. Email delivery services
such as Exim are often run on the same system as
other Internet services, to improve resource utiliza-
tion and simplify system administration through serv-
er consolidation. However, services such as Exim
have been easily exploited by the fact that they have
access to system resources, such as a shell program,
that they do not need to perform their job.

AutoPod can isolate email delivery to provide a signif-
icantly higher level of security in light of the many at-
tacks on mail transfer agent vulnerabilities that have
occurred. Using AutoPod with Exim, Exim can exe-
cute in a resource restricted pod, which isolates email
delivery from other services on the system. In particu-
lar, the Exim pod can be configured with no shell,



preventing the common buffer overflow exploit of
getting the privileged server to execute a local shell. If
a fault is discovered in the underlying host machine,
the email delivery service can be moved to another
system while the original host is patched, preserving
the availability of the email service.

Setting up AutoPod to provide the Exim pod on
Linux is straightforward and leverages the same skill
set and experience system administrators already
have on standard Linux systems. AutoPod is started
by loading its kernel module into a Linux system and
using its user-level utilities to set up and insert
processes into a pod.

Creating a podss file system is the same as creating a
chroot environment. Administrators who have expe-
rience creating a minimal environment, just contain-
ing the application they want to isolate, do not need
to do any extra work. However, many administrators
do not have such experience and therefore need an
easy way to create an environment to run their appli-
cation in. Debian’s debootstrap utility enables a user
to quickly set up an environment that’s the equivalent
of a base Debian installation. An administrator would
do a debootstrap stable /pod to install the most re-
cently released Debian system into the directory.
While this will also include many packages that are
not required by the installation, it provides a small
base to work from. An administrator can remove
packages, such as the installed mail transfer agent,
that are not needed.

To configure Exim, an administrator edits the appro-
priate configuration files within the /pod/etc/exim4/
directory. To run Exim in a pod, an administrator
does mount -o bind /pod /autopod/exim/root to loop-
back mount the pod directory onto the staging area
directory where AutoPod expects it. autopod add
exim is used to create a new pod named exim which
uses /autopod/exim/root as the root for its file system.
Finally, autopod addproc exim /usr/sbin/exim4 is
used to start Exim within the pod by executing

the program, which is actually located at
/autopod/exim/root/usr/sbin/exim4.

To manually reboot the system without killing the
processes within this Exim pod, an administrator can
first checkpoint the pod to disk by running autopod
checkpoint exim -o /exim.pod, which tells AutoPod to
checkpoint the processes associated with the exim
pod to the file /exim.pod. The system can then be re-
booted, potentially with an updated kernel. Once it
comes back up, the pod can be restarted from the
/exim.pod file by running autopod restart exim -i
/exim.pod.

Standard Debian facilities for installing packages can
be used for running other services within a pod. Once

;LOGIN: DECEMBER 2005

the base environment is set up, an administrator can
run chroot /pod to continue setting it up. By editing
the /etc/apt/sources. list file appropriately and running
apt-get update, an administrator will be able to install
any Debian package into the pod. In the Exim exam-
ple, Exim does not need to be installed since it is the
default MTA and already included in the base Debian
installation. If one wanted to install another MTA,
such as Sendmail, one could run apt-get install send-
mail, which will download Sendmail and all the pack-
ages needed to run it. This will work for any service
available within Debian. An administrator can also
use the dpkg —purge option to remove packages that
are not required by a given pod. For instance, in run-
ning an Apache Web server in a pod, one could re-
move the default Exim mail transfer agent, since it is
not needed by Apache.

The AutoPod system provides an operating system
virtualization layer that decouples process execution
from the underlying operating system, by running the
process within a pod. Pods provide an easy-to-use
lightweight virtual machine abstraction that can se-
curely isolate individual applications without the
need to run a full operating system instance in the
pod. Furthermore, AutoPod can transparently mi-
grate isolated applications across machines running
different operating system kernel versions. This en-
ables security patches to be applied to operating sys-
tems in a timely manner with minimal impact on the
availability of application services. For more informa-
tion, see http://www.ncl.cs.columbia.edu/research
/migrate/.

REFERENCES

[1] Shaya Potter and Jason Nieh, “AutoPod: Unscheduled
System Updates with Zero Data Loss,” Abstract in Proceed-
ings of the Second IEEE International Conference on Autonom-
ic Computing (ICAC 2005), Seattle, WA, June 13-16, 2005, pp.
367-368.

[2] Ricardo Baratto, Shaya Potter, Gong Su, and Jason Nieh,
“MobiDesk: Mobile Virtual Desktop Computing,” Proceed-
ings of the 10th Annual ACM International Conference on Mo-
bile Computing and Networking (MobiCom 2004), Philadel-
phia, PA, September 26—October 1, 2004, pp. 1-15.

[3] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason
Nieh, “The Design and Implementation of Zap: A System for
Migrating Computing Environments,” Proceedings of the
Fifth Symposium on Operating Systems Design and Implemen-
tation (OSDI ’02), Boston, MA, December 9-11, 2002, pp.
361-376.

[4] Gong Su, “MOVE: Mobility with Persistent Network
Connections,” Ph.D. Thesis, Department of Computer Sci-
ence, Columbia University, October 2004.

[5] Shaya Potter and Jason Nieh, “Reducing Downtime Due
to System Maintenance and Upgrades,” Proceedings of the
19th Large Installation System Administration Conference
(LISA °05), San Diego, CA, December 4-9, 2005.

BREAKING THE TIES THAT BIND

17





